Автор работы: Пользователь скрыл имя, 22 Сентября 2014 в 20:03, шпаргалка
Предмет биологии в мед. ВУЗе. Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Биологические науки.
Биологическая подготовка играет принципиальную и все более возрастающую роль в структуре медицинского образования. Будучи фундаментальной естественнонаучной дисциплиной, биология раскрывает закономерности возникновения и развития, а также необходимые условия сохранения жизни как особого явления природы нашей планеты.
23 вопр
Трансляцией (от лат. translatio — перевод) называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).
Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты, и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК, рибосома синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.[1]
Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон CCA, а к этой тРНК будет присоединяться только аминокислота глицин).
Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.
Процесс трансляции разделяют на
инициацию — узнавание рибосомой стартового кодона и начало синтеза.
элонгацию — собственно синтез белка.
терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.
Инициация
Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.
Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, IF; инициаторные факторы эукариот обозначают eIF, от англ. eukaryotes).
Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на любых участках мРНК, в то время как эукариотические рибосомы обычно присоединяются к мРНК в области кэпа и сканируют её в поисках стартового кодона.
Элонгация В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит аминоцилированную (заряженную аминокислотой) тРНК в А (аминоацил)-сайт рибосомы. Рибосома катализирует образование пептидной связи, происходит перенос растущей цепи пептида с Р-сайтовой тРНК на находящуюся в А-сайте, пептид удлиняется на один аминокислотный остаток. Затем второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует так называемую транслокацию. Транслокация — перемещение рибосомы по мРНК на один триплет, в результате которого пептидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК из P-сайта переходит в Е-сайт (от слова exit). Цикл элонгации завершается, когда новая тРНК с нужным антикодоном приходит в A-сайт
Терминация — окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов — UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 — UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонами.
Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК. Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'[1]
Транскрипция состоит из стадий инициации, элонгации и терминации.
Инициация транскрипции — сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности (а у эукариот также и от более далеких участков генома — энхансеров и сайленсеров) и от наличия или отсутствия различных белковых факторов.
Элонгация транскрипции
Момент перехода РНК-полимеразы от инициации транскрипции к элонгации точно не определен. Три основных биохимических события характеризуют этот переход в случае РНК-полимеразы кишечной палочки: отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев — переходом РНК-полимеразы в состояние компетентности в отношении элонгации (например, фосфорилирование CTD-домена у РНК-полимеразы II). Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы (терминация).
На стадии элонгации в ДНК расплетено примерно 18 пар нуклеотидов. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади — восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.
Элонгация осуществляется с помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно[2].
В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена. Особенно четко это видно при низких концентрациях субстратов. В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т. н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.
Терминация
У бактерий есть два механизма терминации транскрипции:
ро-зависимый механизм, при котором белок Rho (ро) дестабилизирует водородные связи между матрицей ДНК и мРНК, высвобождая молекулу РНК.
ро-независимый, при котором транскрипция останавливается, когда только что синтезированная молекула РНК формирует стебель-петлю, за которой расположено несколько урацилов (…УУУУ), что приводит к отсоединению молекулы РНК от матрицы ДНК.
Терминация транскрипции у эукариот менее изучена. Она завершается разрезанием РНК, после чего к её 3' концу фермент добавляет несколько аденинов (…АААА), от числа которых зависит стабильность данного транскрипт.
Транскрипционные фабрики
Существует ряд экспериментальных данных, свидетельствующих о том, что транскрипция осуществляется в так называемых транскрипционных фабриках: огромных, по некоторым оценкам, до 10 МДа комплексах, которые содержат около 8 РНК-полимераз II и компоненты последующего процессинга и сплайсинга, а также корректирования новосинтезированного транскрипта[4]. В ядре клетки происходит постоянный обмен между пулами растворимой и задействованной РНК-полимеразы. Активная РНК-полимераза задействована в таком комплексе, который в свою очередь является структурной организовывающей компактизацию хроматина единицей. Последние данные[5] свидетельствуют о том, что транскрипционные фабрики существуют и в отсутствие транскрипции, они фиксированы в клетке (пока не ясно, взаимодействуют ли они с ядерным матриксом клетки или нет) и представляют собой независимый ядерный субкомпартмент. Комплекс транскрипционных фабрик, содержащих РНК полимеразу I, II или III, был проанализирован с помощью масс-спектрометрии.
Связь между геном и белком, структура которого определяется структурой гена впервые была сформулирована в виде гипотезы "1 ген - 1 фермент" Бидлом и Татумом.
24 вопр
Регуляция экспрессии генов у прокариот
Изучение регуляции генной активности у прокариот привело французских
микробиологов Ф. Жакоба и Ж. Моно к созданию (1961) оперонной модели
регуляции транскрипции. Оперон — это тесно связанная последовательность
структурных генов, определяющих синтез группы белков, которые участвуют в
одной цепи биохимических преобразований. Например, это могут быть гены,
которые детерминируют синтез ферментов, участвующих в метаболизме какого-
либо вещества или в синтезе какого-то компонента клетки. Оперонная модель
регуляции экспрессии генов предполагает наличие единой системы регуляции у
таких объединенных в один оперон структурных генов, имеющих общий промотор
и оператор.Особенностью прокариот является транскрибирование мРНК со всех
структурных генов оперона в виде одного полицистронного транскрипта, с которого
в дальнейшем синтезируются отдельные пептиды.
Примером участия генетических и негенетических факторов в регуляции
экспрессии генов у прокариот может служить функционирование лактозного
оперона у кишечной палочки Е. colt. При отсутствии в среде, на которой
выращиваются бактерии, сахара лактозы активный белок-репрессор, синтезируемый
геном-регулятором , взаимодействует с оператором , препятствуя соединению
РНК-полимеразы с промотором и транскрипции структурных генов Z, Y, А.
Появление в среде лактозы инактивирует репрессор, он не соединяется с
оператором, РНК-полимераза взаимодействует с промотором и осуществляет
транскрипцию полицистронной мРНК. Последняя обеспечивает синтез сразу всех
ферментов, участвующих в метаболизме лактозы. Уменьшение содержания лактозы
в результате ее ферментативного расщепления приводит к восстановлению
способности репрессора соединяться с оператором и прекращению транскрипции
генов Z, Y, А.
Таким образом, регуляция экспрессии генов, организованных у прокариот в
опероны, является координированной. Синтез полицистронной мРНК обеспечивает
одинаковый уровень синтеза всех ферментов, участвующих в биохимическом
процессе.
В связи с особенностями организации отдельных генов эукариот и генома в
целом регуляция генной активности у них характеризуется некоторыми отличиями
по сравнению с прокариотами.
У эукариот не установлено оперонной организации генов. Гены,
определяющие синтез ферментов одной цепи биохимических реакций, могут быть
рассеяны в геноме и, очевидно, не имеют, как у прокариот, единой регулирующей
системы (ген-регулятор, оператор, промотор). В связи с этим синтезируемые мРНК
у эукариот моноцистронны, т.е. являются матрицами для отдельных пептидных
цепей. В настоящее время механизмы регуляции и координации активности
эукариотических генов интенсивно изучаются. Установлено, что их
функционирование несомненно подчиняется регуляторным воздействиям, однако
регуляция транскрипции у эукариот является комбинационной, т.е. активность
каждого гена регулируется большим спектром генов-регуляторов (рис. 3.87).
Регуляция экспрессии гена, кодирующего белок Х у эукариот,
двумя регуляторными белками. У многих эукариотических генов, кодирующих белки и транскрибируемых РНК-полимеразой II, в ДНК имеется несколько областей, которые узнаются разными белками-регуляторами. Одной из них является область, расположенная вблизи промотора. Она включает около 100 пар нуклеотидов, в том числе ТАТА-
блок, располагающийся на расстоянии 25 пар нуклеотидов от точки начала
транскрипции. Установлено, что для успешного присоединения РНК-полимеразы II
к промотору необходимо предварительное соединение с ТАТА-блоком особого
белка — фактора транскрипции — с образованием стабильного транскрипционного
комплекса. Именно этот комплекс ДНК с белком узнается РНК-полимеразой II.
Последовательности нуклеотидов, примыкающие к ТАТА-блоку, формируют
требуемый для транскрипции элемент, расположенный перед промотором.
Другая область, играющая важную роль в регуляции активности
эукариотических генов, располагается на большом расстоянии от промотора (до
нескольких тысяч пар нуклеотидов) и называется энхансером (от англ. enhance —
усиливать).
И энхансер, и препромоторный элемент эукариотических генов содержат
серию коротких нуклеотидных последовательностей, которые связываются с
соответствующими регуляторными белками. В результате взаимодействия этих
белков происходит включение или выключение генов.
Особенностью регуляции экспрессии эукариотических генов является также
существование белков-регуляторов, которые способны контролировать
транскрипцию многих генов, кодирующих, возможно, другие белки-регуляторы. В
связи с этим некоторые (главные) белки-регуляторы обладают координирующим
влиянием на активность многих генов и их действие характеризуется плейотропным
эффектом (рис. 3.88). Примером может служить существование белка, который
активирует транскрипцию нескольких специфических генов, определяющих
дифференцировку предшественников жировых клеток.
Регуляция экспрессии многих генов эукариот
одним белком-регулятором
Ввиду того что в геноме эукариот имеется много избыточной ДНК, а в каждой