Рассмотреть применение смешенных конструктивных систем, основываясь на знаниях архитектурного наследия

Автор работы: Пользователь скрыл имя, 06 Сентября 2014 в 22:36, научная работа

Краткое описание

До недавнего времени бескаркасная система являлась основной в массовом жилищном строительстве домов различной этажности. На сегодняшний день наиболее применяемыми конструктивными системами являются каркасная и стеновая (бескаркасная) системы. Несмотря на актуальность этих систем, мы рассмотрим альтернативу между ними потому, что как в древности, так и в современных условиях часто функциональные особенности здания и экономические предпосылки приводят к необходимости сочетания обеих конструктивных систем, которые объединяются в комбинированную (смешанную) систему.

Прикрепленные файлы: 1 файл

КЗС.docx

— 727.86 Кб (Скачать документ)

Введение:

В последние годы строительство постепенно отходит от номинальных конструктивных схем, т. е. расстояние между осями может быть любым. На выбор конструктивной схемы влияет функциональное назначение сооружения, его технологические особенности и степень пожаростойкости. Также учитывается и материал, из которого наше здание будет возведено. Поэтому выбирается или каркасная схема, или схема с продольными или поперечными несущими стенами. Нередко здание представляет собой смешанную схему, т. е, наружные стены могут быть несущими, в внутри – каркас.

Задавшись конструктивной схемой здания, делаем разбивку по осям. Здесь опять необходимо учесть, какими конструкциями будет перекрываться наше сооружение. Если здание большепролетное, лучше использовать перекрытие из металла или из дерева по балкам или фермам. Предпочтение тому или иному материалу перекрытия следует отдавать на основе технологических и пожарных требований. Например, в зданиях мельничных комплексов перекрытие из дерева нельзя принимать, так как они относятся к взрывопожарным типам зданий. В таких же зданиях до недавнего времени в качестве ограждающих конструкций применялись сэндвич-панели. Поэтому используется смешанная конструктивная схема: стены из естественных природных материалов, например, кирпич. А внутри стальные колонны с металлическими балками перекрытия и покрытия. Для покрытия использовать кровельные сэндвич-панели можно, но с использованием в них теплоизоляционного материала на основе базальтовой негорючей минеральной ваты.

При разбивке здания по осям, когда в качестве перекрытия используются сборные железобетонные плиты, учитываются номинальные размеры длин и ширин плит. Так расстояние по несущим осям должно быть таким, чтобы плиты перекрытия имели достаточное опирание на несущие конструкции. Для плит различной длины оно разное. Например, для плит длиной 6 и более метров, минимальное опирание должно быть не менее 120мм на кирпичные стены. Оно может быть несколько больше, но не на много. Так как по технологии возведения здания пустоты с торцов плит на глубину опирания заделываются бетоном: легким – когда плиты опираются на внутренние стены, и тяжелым – при опирании на наружные стены.

Таким образом, в зданиях с продольными несущими стенами, стены должны располагаться согласно размерам плит перекрытий. Если нет возможности выполнить внутренние несущие стены, для опирания плит перекрытия можно использовать металлические балки из прокатных профилей. Тип балок, их размеры определяют на основе расчетов. Почему лучше применять металлические балки? В последние годы выпуск сборных железобетонных балок резко сократился.  Да и стоимость их значительно выше стальных сварных их прокатных профилей. Кроме того, сборные железобетонные балки ограничены в применении из-за своих типовых размеров. В случае же с металлическими балками или фермами, можно выполнить перекрытие и покрытие здания любых размеров.

Не стоит забывать и о возможности наличия деформационных или температурных швов. Правила их выполнения всем конструкторам хорошо известны.

На основе всех этих данных и выбирается конструктивная схема здания. При выполнении проектных работ это начинается с правильной обрисовки осей будущего строения.


 

До недавнего времени бескаркасная система являлась основной в массовом жилищном строительстве домов различной этажности. На сегодняшний день наиболее применяемыми конструктивными системами являются каркасная и стеновая (бескаркасная) системы. Несмотря на актуальность этих систем, мы рассмотрим альтернативу между ними потому, что как в древности, так и в современных условиях часто функциональные особенности здания и экономические предпосылки приводят к необходимости сочетания обеих конструктивных систем, которые объединяются в комбинированную (смешанную) систему. Она представляет собой систему с неполным каркасом, основанную на сочетании несущих стен и каркаса, воспринимающих все вертикальные и горизонтальные нагрузки. Система применялась в двух вариантах: с несущими наружными стенами и внутренним каркасом либо с наружным каркасом и внутренними стенами. Первый вариант использовался при повышенных требованиях к свободе планировочных решений здания, второй - при целесообразности применения ненесущих легких конструкций наружных стен и при проектировании зданий средней и повышенной этажности.

 Первый вариант был  нами изучен и подробно рассмотрен  на примере древнего Собора  Святой Софии в городе Новгороде, который был завершен в 1050 году  и возводился в традиционной  системе, основанной на возведении  стен в технике ручной кладки, позволяющей проектировать здания  любой формы с различными высотами  этажей и проемов. Применение  традиционной системы считалось  наиболее целесообразным для  зданий, доминирующих в застройке  того времени.

  Актуальность темы  исследования - каковы особенности застройки архитектурного наследия, позволяющие простоять зданию много веков и стать достоянием и гордостью нашей страны?

 Объект исследования - Собор Святой Софии в Новгороде, как пример применения смешанной  системы.

 Область исследования - смешенные конструктивные системы  в общественных зданиях.

 Цель исследования - рассмотреть  применение смешенных конструктивных  систем, основываясь на знаниях  архитектурного наследия.

В ходе исследования была выдвинута следующая гипотеза: применение знаний, полученных от старых мастеров, с учетом новых технологий и возможностей приведет к наиболее качественному строительству зданий в настоящее время.

В соответствии с целью, объектом, областью и гипотезой в исследовании были поставлены и решались следующие задачи:

• Охарактеризовать конструктивные системы, особенности применения их в настоящее время.

• Разобрать понятия о составляющей конструкций.

• Изучить историю строительства архитектурного памятника.

• Разработать особенности строительства при возведении.

• Оценить эффективность применимых техник при строительстве храма.

 Для решения поставленных  задач использовались следующие  методы: изучение и анализ теоретических  и прикладных трудов в области  строительства; анализ опыта архитектурного  наследия; теоретические знания, направленные  на выявление особенностей строительства  собора.

Научная новизна исследования:

• Определены индивидуальные особенности архитектурного памятника.

• Впервые выявлены  применяемые технологии строительства исторического наследия.

• Уточнены и конкретизированы данные о применении смешанной (комбинированной) конструктивной системы.

• Определены концептуальные основы проектирования храма.

• Расширены представления о конструкции здания.

 

 

 

 

 

 

 

 

 

  1. Понятие «конструктивная система здания». Виды систем.

 

Конструктивная система здания представляет собою совокупность взаимосвязанных несущих конструкций здания, обеспечивающих его прочность, пространственную жесткость и надежность в эксплуатации. Выбор конструктивной системы здания определяет статическую роль каждой из его конструкций. Материал конструкций и технику их возведения определяют при выборе строительной системы здания.

Несущие конструкции здания состоят из взаимосвязанных вертикальных и горизонтальных элементов.

Системы перекрытий с древности проектировались из стереотипного подхода к компоновке балочной клетки, т.е. состояли из балок (ригелей) и настила, так конструктивно решаются и деревянные перекрытия. Затем появляются железобетонные ребристые плиты перекрытия, в которых этот подход уже слит в один конструктивный элемент. Появившиеся позднее плоские пустотные плиты перекрытий – являются значительным шагом в проектировании систем зданий нового типа.

В индустриальных жилых зданиях, в сравнении с традиционными сооружениями, имевшими смешанные покрытия, включавшие фрагменты деревянных перекрытий, горизонтальные несущие конструкции впервые начинают выполнять роль диафрагм жесткости, кроме того, перекрытия воспринимают горизонтальные нагрузки и воздействия (ветровые, сейсмические и др.) и передают усилия от этих воздействий на вертикальные конструкции.

Передача горизонтальных нагрузок и воздействий осуществляется двояко: либо с распределением их на все вертикальные конструкции здания, либо на отдельные специальные вертикальные элементы жесткости (стены, диафрагмы жесткости, решетчатые ветровые связи или стволы жесткости). Индустриальный тип зданий предоставляет и промежуточные решения – передача нагрузки возможна с распределением горизонтальных нагрузок в различных пропорциях между элементами жесткости и конструкциями, работающими на восприятие вертикальных нагрузок.

Перекрытия - диафрагмы жесткости обеспечивают совместность горизонтальных перемещений вертикальных несущих конструкций от ветровых и сейсмических воздействий. Возможность совместности и выравнивания перемещений достигается жестким сопряжением горизонтальных несущих конструкций с вертикальными.

Как уже отмечалось ранее, при сокращении строительных объемов зданий, горизонтальные несущие конструкции жилых домов высотой более двух этажей в соответствии с требованиями противопожарных норм выполняются трудно сгораемыми или несгораемыми. Этим требованиям, а также требованиям экономической страты наиболее полно удовлетворяют железобетонные конструкции, что и определило их массовое применение в качестве горизонтальных несущих элементов всех типов зданий. Перекрытия обычно представляют собой железобетонную плиту - сборную, сборно-монолитную или монолитную.

Вертикальные несущие конструкции различают по виду конструкций, который служит определяющим признаком и для классификации конструктивных систем. При использовании колонн в качестве главных вертикальных несущих элементов конструкций уже на первом этапе индустриализации позволило получить четыре конструктивных схемы серийного жилого дома: с поперечным расположением ригелей; с продольным расположением ригелей; с перекрестным расположением ригелей; безригельное решение.

Индустриализация позволила не только с новой точки зрения взглянуть на работу перекрытий, но и значительно расширить типологию вертикальных несущих конструкций. При развитии серийного жилищного строительства отдельными группами выделяются следующие виды вертикальных несущих конструкций:

  • плоскостные (стены);
  • стержневые сплошного сечения (стойки каркаса);
  • объемно-пространственные(объемные блоки);
  • объемно-пространственные внутренние несущие конструкции на высоту зданий в виде тонкостенных стержней открытого или замкнутого профиля (стволы жесткости). Ствол жесткости обычно располагают в центральной части здания; во внутреннем пространстве ствола размещают лифтовые, вентиляционные шахты и другие коммуникации. В зданиях большой протяженности предусматривают несколько стволов жесткости;
  • объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого профиля, образующей одновременно и наружную ограждающую конструкцию здания. В зависимости от архитектурного решения внешняя несущая оболочка может иметь призматическую, цилиндрическую, пирамидальную или другую форму.

Соответственно видам вертикальных несущих конструкций различают пять основных конструктивных систем зданий: каркасную, бескаркасную (стеновую), объемно-блочную, ствольную и оболочковую, иначе называемую периферийной (рис. 9).

 

 

Рис. 9. Планы основных конструктивных систем жилых зданий: а - каркасная; б - бескаркасная; в - объемно-блочная (столбчатая); г - ствольная; д - оболочковая.

Выбор вертикальных несущих конструкций, характера распределения горизонтальных нагрузок и воздействий между ними - один из основных вопросов при компоновке конструктивной системы. Он также оказывает влияние на планировочное решение, архитектурную композицию и экономическую целесообразность проекта. В свою очередь на выбор системы оказывают влияние типологические особенности проектируемого здания, его этажность и инженерно-геологические условия строительства.

Каркасная система с пространственным рамным каркасом применяется преимущественно в строительстве многоэтажных сейсмостойких зданий, высотой более девяти этажей, а также в обычных условиях строительства при наличии соответствующей производственной базы. Каркасная система - основная в строительстве общественных и промышленных зданий. В жилищном строительстве объем ее применения ограничен не только по экономическим соображениям. Основа противопожарных требований при проектировании жилых зданий – последовательное создание вертикальных преград огню –брандмауэров. В сооружении каркасного типа создание брандмауэров велось по встраиванию между колоннами несгораемых вертикальных диафрагм жесткости. Таким образом, заранее ограничивались возможности пространственной планировки, основного преимущества каркасных систем.

Бескаркасная система - самая распространенная в жилищном строительстве, ее используют в зданиях различных планировочных типов высотой от одного до30 этажей.

Объемно-блочная система зданий в виде группы отдельных несущих столбов из установленных друг на друга объемных блоков применялась для жилых домов высотой до 12 этажей в обычных и сложных грунтовых условиях. Столбы объединялись друг с другом гибкими или жесткими связями.

Ствольную систему применяют в зданиях высотой более 16 этажей. Наиболее целесообразно применение ствольной системы для компактных в плане многоэтажных зданий, особенно в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и т. п.).

Оболочковая система присуща уникальным высотным зданиям жилого, административного или многофункционального назначения.

Наряду с основными конструктивными системами широко применяют комбинированные, в которых вертикальные несущие конструкции компонуют из различных элементов - стержневых и плоскостных, стержневых и ствольных и т. п. Наиболее распространенные комбинированные системы.

Система с неполным каркасом, основанная на сочетании несущих стен и каркаса, воспринимающих все вертикальные и горизонтальные нагрузки. Система применялась в двух вариантах: с несущими наружными стенами и внутренним каркасом либо с наружным каркасом и внутренними стенами. Первый вариант использовался при повышенных требованиях к свободе планировочных решений здания, второй - при целесообразности применения ненесущих легких конструкций наружных стен и при проектировании зданий средней и повышенной этажности.

Каркасно-диафрагмовая система основана на разделении статических функций между стеновыми (связевыми) и стержневыми элементами несущих конструкций. На стеновые элементы (вертикальные диафрагмы жесткости) передается всю или большую часть горизонтальных нагрузок и воздействий, на стержневые (каркас) - преимущественно вертикальные нагрузки. Система получила наиболее широкое применение в строительстве многоэтажных каркасно-панельных жилых домов в обычных условиях и в сейсмостойком строительстве.

Каркасно-ствольная система основана на разделении статических функций между каркасом, воспринимающим вертикальные нагрузки, и стволом, воспринимающим горизонтальные нагрузки и воздействия. Она применялась при проектировании высотных жилых зданий.

Рис. 10. Комбинированные конструктивные системы: а - с неполным каркасом; б - каркасно-диафрагмовая; в - каркасно-стволовая; г - каркасно-блочная; д - блочно-стеновая; е - ствольно-стеновая; ж - оболочково-стволовая; и - каркасно-оболочковая.

Каркасно-блочная система основана на сочетании каркаса и объемных блоков, причем последние могут получать применение в системе в качестве ненесущих или несущих конструкций. Ненесущие объемные блоки используют для поэтажного заполнения несущей решетки каркаса. Несущие устанавливают друг на друга в три-пять ярусов на горизонтальных несущих платформах (перекрытиях) каркаса, расположенных с шагом в три-пять этажей. Система применялась в зданиях выше 12 этажей.

Блочно-стеновая (блочно-панельная) система основана на сочетании несущих столбов из объемных блоков и несущих стен, поэтажно связанных друг с другом дисками перекрытий. Применялась в жилых зданиях высотой до 9 этажей в обычных грунтовых условиях.

Ствольно-стеновая система сочетает несущие стены и ствол с распределением вертикальных и горизонтальных нагрузок между этими элементами в различных соотношениях. Применялась при проектировании зданий выше 16 этажей.

Ствольно-оболочковая система включает в себя наружную несущую оболочку и несущий ствол внутри здания, работающих совместно на восприятие вертикальных и горизонтальных нагрузок. Совместность перемещений ствола и оболочки обеспечивается горизонтальными несущими конструкциями отдельных ростверковых этажей, расположенных по высоте здания. Система применялась при проектировании высотных зданий.

Каркасно-оболочковая система сочетает в себе наружную несущую оболочку здания с внутренним каркасом при работе оболочки на все виды нагрузок и воздействий, а каркаса - преимущественно на вертикальные нагрузки. Совместность горизонтальных перемещений оболочки и каркаса обеспечивается так же, как в зданиях оболочково-ствольной системы. Применялась при проектировании высотных зданий.

Понятие "конструктивная система" - обобщенная конструктивно-статическая характеристика здания, не зависящая от материала, из которого оно возводится, и способа возведения. Например, на основе бескаркасной конструктивной системы могло быть запроектировано здание со стенами деревянными рублеными, кирпичными, бетонными (крупноблочными, панельными или монолитными).

В свою очередь, каркасная система может быть осуществлена в деревянных, стальных или железобетонных конструкциях. Возникали варианты и при использовании различных материалов заполнения ячеек, образованных несущими элементами в каркасных или ствольных зданиях. Для этой цели использовались любые элементы - от мелкоразмерных до объемно-блочных.

Несущая часть оболочкового здания может представлять собой раскосную или безраскосную пространственную стальную ферму, монолитную железобетонную оболочку с регулярно расположенными проемами, сборно-монолитную железобетонную решетку и так далее. Многовариантными являлись и комбинированные конструктивные системы. Области и масштабы применения в строительстве отдельных конструктивных систем определялись назначением здания и его этажностью.

Наряду с основными и комбинированными в проектировании получают применение смешанные конструктивные системы, в которых сочетаются по высоте или протяженности здания двух или нескольких конструктивных систем. Такое решение обычно бывает продиктовано функциональными требованиями. Например, если требовалось выполнить переход от бескаркасной системы в верхних типовых этажах к каркасной системе на первых этажах, т.е. при необходимости устройства мелкоячеистой планировочной структуры типовых этажей над зальной планировочной структурой в нетиповых. Чаще всего эта необходимость возникает при устройстве крупных магазинов в первых этажах жилых домов.

Конструктивная схема представляет собой вариант конструктивной системы по признакам состава и типу размещения в пространстве основных несущих конструкций, например, в продольном или поперечном направлениях. Конструктивную схему, как и систему, выбирают на начальном этапе проектирования с учетом объемно-планировочных конструктивных и технологических требований. В жилых каркасных зданиях применяют четыре конструктивные схемы: с поперечными или продольными ригелями, перекрестным расположение ригелей и безригельную (рис. 11). При выборе конструктивной схемы каркаса учитывают экономические и архитектурные требования: элементы каркаса не должны связывать планировочное решение; ригели каркаса не должны пересекать поверхность потолка в жилых комнатах и т. д.

 

 

Рис. 11. Конструктивные схемы каркасных зданий первых массовых серий: а - с поперечным расположением ригелей; б — с продольным расположением ригелей; в — с перекрестным расположением ригелей; г – безригельное решение; 1 – столбчатый фундамент; 2 – наружная самонесущая стена; 3 – колонны; 4 – ригели, уложенные поперек здания; 5 – панели междуэтажного перекрытия; 6 – ригели, уложенные вдоль здания.

 

Поэтому каркас с поперечным расположением ригелей применяют в многоэтажных зданиях с регулярной планировочной структурой (в основном, общежития и гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций.

Каркас с продольным расположением ригелей применялся в жилых домах квартирного типа.

Безригельный (безбалочный) каркас в жилых зданиях использовался лишь при отсутствии в конкретном регионе соответствующей производственной базы и крупных домостроительных


комбинатов, поскольку для сборного жилищного строительства такая схема – наименее надежная и наиболее дорогостоящая. Безригельный каркас преимущественно использовался при изготовлении монолитных и сборно-монолитных конструкций здания методом подъема этажей.

Рис. 12. Конструктивные схемы бескаркасных зданий: I - перекрестно-стеновая; II и III - поперечно-стеновые; IV и V — продольно-стеновые; А — варианты с ненесущими или самонесущими продольными наружными стенами; Б — то же, с несущими; а — план стен; б — план перекрытий. 

 

К концу 70-х годов «Инструкцией по проектированию конструкций панельных жилых зданий» (ВСН 32-77) системы крупнопанельных жилых зданий наиболее распространенной бескаркасной системы были разделены по следующим конструктивным схемам (рис. 12):

схема I - с перекрестным расположением внутренних несущих стен при малом шаге поперечных стен;

схема II - с чередующимися размерами (большим и малым) шага поперечных несущих стен и отдельными продольными стенами жесткости (схема со смешанным шагом стен);

схема III - с редко расположенными поперечными несущими стенами и отдельными продольными стенами жесткости (с большим шагом стен);

схема IV - с продольными наружными и внутренними несущими стенами, и редко расположенными поперечными стенами - диафрагмами жесткости;

схема V - с продольными наружными несущими стенами и редко расположенными поперечными диафрагмами жесткости.

При описании конструктивных решений термин "схема" часто опускают, к примеру "бескаркасную конструктивную систему перекрестно-стеновой схемы" обозначают как "бескаркасная перекрестно-стеновая конструктивная система".

Схема I в соответствии с особенностями ее статической работы называется также перекрестно-стеновой, схемы II-V - плоскостенными.

В трех первых схемах возможно вариантное решение продольных наружных стен в виде несущей, самонесущей и ненесущей конструкции. В схемах IV-V - наружные стены могут быть только несущими, а поперечные внутренние стены решают с передачей на них горизонтальной, либо вертикальной и горизонтальной нагрузок.

Схема I (перекрестно-стеновая) характерна малыми размерами (до 20 м2) конструктивно-планировочных ячеек, что ограничивает область ее применения жилыми зданиями с малогабаритными квартирами. Частое расположение поперечных стен делает трансформацию планов зданий практически неосуществимой. Разнообразие планировочных решений в проектировании домов на основе схемы I достигают применением нескольких размеров шагов поперечных стен (например, 3, 3,6 и 4,2 м) в различных сочетаниях. Благодаря высокой пространственной жесткости схему I широко применяют в проектировании многоэтажных зданий, а также зданий, возводимых в сложных грунтовых и при реальной сейсмической угрозе.

Схемы II-III - поперечно-стеновые - имеют ряд преимуществ в архитектурно-планировочном отношении перед схемой I. Они позволяют более разнообразно решать планировку жилых зданий, размещать встроенные нежилые помещения в первых этажах.

Схема III несколько уступает схеме II в вариантности планировочных решений квартир при ограничении шага поперечных несущих стен одной величиной. Эта особенность одновременно является конструктивным преимуществом схемы III при компоновке ее в полносборных конструкциях, так как позволяет сократить номенклатуру сборных изделий на 5-10 % по сравнению со схемами I и II.

Схема IV - продольно-стеновая (рис. 13, а) - традиционная в проектировании жилых и общественных зданий малой, средней и повышенной этажности с каменными и крупноблочными конструкциями. В панельном строительстве схему IV применяют реже (до 10% общего объема панельного домостроения) в случае недостаточного развития соответствующей производственной базы.

Редкое расположение поперечных стен - диафрагм жесткости (через 25-40 м) обеспечивает свободу планировочных решений в зданиях, проектируемых на основе схемы IV. Схема V применялась в экспериментальном проектировании и строительстве жилых домов высотой 9-10 этажей.

Она обеспечивает максимальную свободу планировки и многократной трансформации планов квартир в течение срока эксплуатации здания, а также свободную планировку встроенных нежилых помещений.

Применительно к панельным зданиям средней этажности все пять схем экономически равноценны. С ростом этажности схемы II-IV с пролетами перекрытий 6 м и более позволяют несколько снизить приведенные затраты и другие показатели (в % на I м2 общей площади) по сравнению со схемой I (см. табл. 1).

На рис. 13-14 представлены все типы описанных конструктивных схем

Панельных зданий.

 Рис. 13. Конструктивные схемы бескаркасных зданий: а - с продольным расположением несущих стен (схема IV); б - с поперечным расположением несущих стен (схемы I-III); в – совмещенная (схема V); 1 - фундаменты; 2 - внутренние продольные несущие стены; 3 — наружная продольная несущая стена; 4 - панели междуэтажного перекрытия; 5 -внутренняя несущая стена; в -наружная самонесущая стена; 7 - торцовая несущая стена.

Рис. 14. Бескаркасное крупнопанельное здание с продольным расположением несущих стен (схема IV); 1 - продольная несущая стена; 2 – панель подвальной части здания; 3 – плита перекрытия; 4 – наружная панель; 5 – плоская железобетонная кровля. 

Таблица 1. Соотношения технико-экономических показателей панельных домов различных конструктивных схем на 1 м2 общей площади (%) 


Показатель

Этажность

Конструктивная схема

I

II

IV

Приведенные затраты

5—9 этажей

100

99

98

Затраты труда

100

98

97

Расход стали

100

105

105

Расход цемента

100

85

80

Приведенные затраты

16 этажей и выше

100

98

97

Затраты труда

100

98

97

Расход стали

100

107

106

Расход цемента

100

85

86


 

Строительная система - это комплексная характеристика конструктивного решения зданий по материалу и технологии возведения основных несущих конструкций.

Строительные системы зданий с несущими стенами из кирпича и мелких блоков из керамики, легкого бетона или естественного камня бывают традиционные и полносборные.

Традиционная система основана на возведении стен в технике ручной кладки, как это издревле выполнялось во всех традиционных сооружениях. Необходимо отметить, что в индустриальном сооружении собственно традиционными остаются лишь ограждающие конструкции, перекрытия и другие внутренние несущие конструкции – полностью идентичны полносборным сооружениям.

Полносборная система основывается на механизированном монтаже стен из крупных блоков или панелей, выполненных в заводских условиях из кирпича, каменных или керамических блоков. С вводом новых жилищных серий крупноблочная система почти повсеместно уступает место панельной.

Традиционная система (с деревянными перекрытиями), долгое время считавшаяся основным типом капитального гражданского здания средней и повышенной этажности – осталась в прошлом. Как это неоднократно подчеркивалось, "традиционными" назывались сооружения по сценарию пожара. Лишь для удобства классификации огромного многообразия индустриальных сооружений, в них выделяются традиционные здания, лишь по внешнему виду напоминающие прежние кирпичные сооружения, возводимые до конца 50-х годов.

К середине 80-х годов прошлого столетия на основе применения традиционной системы ограждающих конструкций возводилось около 30% объема строительства жилых и 80% - массовых общественных зданий. Разумеется, уровень индустриальности конструкций зданий "традиционной" строительной системы в целом достаточно высок благодаря массовому применению крупноразмерных сборных изделий перекрытий, лестниц, перегородок, фундаментов.

Индустриальная традиционная система обладала существенными архитектурными преимуществами. Благодаря малым размерам основного конструктивного элемента стены (кирпича, камня) эта система позволяет проектировать здания любой формы с различными высотами этажей и разнообразными по размерам и форме проемами.

Применение традиционной системы считалось наиболее целесообразным для зданий, доминирующих в застройке. Конструкции зданий со стенами ручной кладки надежны в эксплуатации – кирпич высокотехнологичного обжига не требовал устройства многодельной, недолговечной в эксплуатации штукатурки, была значительно повышена огнестойкость индустриальных кирпичных стен. При их проектировании использовались новые подходы к обеспечению долговечности и теплоустойчивости.

Наряду с архитектурными и эксплуатационными преимуществами ручная кладка стен является причиной основных технических и экономических недостатков каменных зданий: трудоемкость возведения и нестабильность прочностных характеристик кладки в зависимости от разных партий кирпича в случае незначительных отклонений в технологическом процессе на кирпичных заводах. Качество и прочность кладки зависели от сезона возведения и квалификации каменщика.

Повышению экономичности и индустриальности конструкций зданий с каменными стенами способствовало применение камня или кирпича высоких марок, частичная замена ручной кладки монтажом кирпичных (каменных) панелей заводского изготовления. Строительная система зданий со стенами из кирпичных панелей впервые разработана и применена в СССР в 1968 г.

В ходе внедрения были разработаны исследованы виброкирпичные конструкций, не имевшие мировых аналогов. Панели несущих стен изготовляют высотой в этаж и длиной в один-два конструктивно-планировочных шага (одно-, двухмодульные панели). Объединения отдельных камней, мелких блоков естественного камня, керамических блоков или кирпича в панель производились путем их предварительной укладки на цементном растворе в стальные формы с вибрированием (виброкирпичные и виброкаменные панели) либо без вибрирования, но со специальными синтетическими добавками в раствор, повышающим сопротивление кладки растяжению (кирпичные и каменные панели).

В обоих случаях прочность конструкции на сжатие увеличивалась в 1,5-2 раза по сравнению со стеной ручной кладки, что обеспечивало экономию 40-50% кирпича или камня, повышало надежность каменной кладки. Переход от конструкций стен ручной кладки к панельным позволил снизить затраты труда на 25%, приведенные затраты на 6-7% и сроки строительства на 30%.

Полносборные здания с несущими конструкциями из бетонных и железобетонных элементов возводят на основе крупноблочной, панельной, каркасно-панельной и объемно-блочной строительных систем.

 

 

 

 

 

 

Таблица 2. Схема классификации строительных систем зданий

 

Крупноблочная строительная система применялась для возведения жилых зданий высотой до 22 этажей. Масса сборных элементов составляла 3-5 т. Установку крупных блоков осуществлялась по основному принципу возведения каменных стен - горизонтальными рядами, на растворе, с взаимной перевязкой швов.

Преимуществами крупноблочной строительной системы являются: простота техники возведения, обусловленная самоустойчивостью блоков при монтаже, возможностью широкого вменения системы в условиях различной сырьевой базы. Гибкая система номенклатуры блоков позволяла возводить различные типы жилых домов при ограниченном числе типоразмеров изделий. Эта система требовала меньших по сравнению с панельным и объемно-блочным домостроением капиталовложений в производственную базу из-за простоты и меньшей металлоемкости формовочного оборудования, а ограниченная масса сборных изделий позволяла использовать распространенное монтажное оборудование малой грузоподъемности.

Создание крупноблочной строительной системы стало первым этапом массовой индустриализации конструкций зданий с бетонными стенами. Крупноблочная система по сравнению с традиционной каменной дала снижение затрат труда на 10% и сроков строительства на 15-20%. По мере внедрения более индустриальной панельной системы постепенно уменьшается объем применения крупноблочной. Уже к середине 70-х годов прошлого столетия крупноблочная система в массовом жилищном строительстве занимает третье место по объему применения после панельной и традиционной каменной систем.

Панельная строительная система применяется при проектировании зданий высотой до 30 этажей в обычных грунтовых условиях и до 14 этажей в сейсмических районах. Внедрение панельной системы в жилищное строительство было начато в конце 1940-х годов одновременно в СССР и во Франции. В 1967 г. вступил в действие разработанный Госстроем СССР ГОСТ 11309-65 на все типы крупнопанельных домов, определяющий все требования к их качеству, устройству стыков и степени точности производства и монтажа изделий.

Стены таких зданий монтируют из бетонных панелей высотой в этаж, массой до 10 т и длиной в 1-3 конструктивно-планировочных шага. Конструкции панелей несамоустойчивы: при возведении их устойчивость обеспечивают монтажные приспособления, а в эксплуатации - специальные конструкции стыков и связей. Панели несущих стен устанавливают на цементном растворе, без взаимной перевязки швов. В середине 80-х годов в СССР панельное домостроение составляло около 60%, а в крупнейших городах достигало 90% всего объема жилищного строительства, что обеспечивало его высокие темпы. В сравнении с традиционной системой устройства ограждающих конструкций с каменными стенами панельная система позволяла снизить стоимость строительства на 6-7%, массу конструкций на 30-40% и затраты труда на 40%.

Техническим преимуществом панельных конструкций является их значительная прочность и жесткость. Это определило широкое применение панельных конструкций для зданий повышенной этажности в сложных грунтовых условиях (на просадочных и вечномерзлых грунтах, над горными выработками). По той же причине панельные конструкции демонстрируют большую сейсмостойкость по сравнению с другими строительными системами.

В других экономически развитых странах объем панельного строительства растет также интенсивно, что объясняется высокой экономической эффективностью строительной системы. Однако, следует заметить, что ни одна страна к началу 80-х годов не имеет такой мощной индустриальной базы строительной отрасли, а к середине 80-х большинство западных стран затронуто серьезным экономическим кризисом.

Каркасно-панельная строительная система с несущим сборным железобетонным каркасом и наружными стенами из бетонных или небетонных панелей применяется в строительстве зданий высотой до 30 этажей. Внедрена в СССР наряду с панельной в конце 1940-х годов, до начала 90-х годов на ее основе ежегодно возводилось около 15% объема общественных зданий. В жилищном строительстве систему применяли в ограниченном объеме, поскольку она уступала панельной по технико-экономическим показателям.

Объемно-блочная строительная система также впервые была внедрена советскими строителями. Объемно-блочные здания возводят из крупных объемно-пространственных железобетонных элементов массой до 25 т, заключающих в себе жилую комнату или другой фрагмент здания. Объемные блоки, как правило, устанавливали друг на друга без перевязки швов.

Объемно-блочное строительство позволяет существенно снизить суммарные трудозатраты в строительстве (на 12-15% по сравнению с панельным) и получить прогрессивную структуру этих затрат. Если в панельном строительстве соотношение затрат труда на заводе и строительной площадке составляет в среднем 50 на 50%, то в объемно-блочном оно приближается от 80% заводского изготовления к 20% трудозатрат на стройплощадке. Из-за сложности технологического оборудования капиталовложения при создании заводов объемно-блочного домостроения на 15% больше по сравнению с заводами панельного домостроения.

Объемно-блочную систему применяют для строительства жилых домов высотой до 16 этажей в обычных и сложных грунтовых условиях и для жилых домов малой и средней этажности при сейсмичности 7-8 баллов. Наиболее эффективно объемно-блочное домостроение при значительной концентрации строительства, необходимости его осуществления в сжатые сроки, при дефиците рабочей силы.

Технико-экономические показатели рассмотренных строительных систем зданий даны в табл. 3.

В связи с невозможностью сразу охватить все районы страны сетью домостроительных комбинатов, наряду с рассмотренными системами получают различные направления в индустриализации технологических процессов возведения несущих конструкций зданий, выполняемых частично или полностью из монолитного бетона.

Монолитная и сборно-монолитная строительные системы применяются преимущественно для возведения зданий повышенной этажности. К системе монолитного домостроения относятся здания, все несущие конструкции которых выполняют из монолитного бетона, к сборно-монолитной - здания, в которых несущие конструкции выполняют частично сборными, частично монолитными. Монолитные здания, как правило, проектируют бескаркасными, сборно-монолитные - каркасными или бескаркасными.

 

 

 

 

 

 

Таблица 3. Технико-экономические показатели жилых зданий различных строительных систем (на 1 м2 общей площади)

Информация о работе Рассмотреть применение смешенных конструктивных систем, основываясь на знаниях архитектурного наследия