Автор работы: Пользователь скрыл имя, 21 Сентября 2014 в 20:46, реферат
Способность к воспроизведению с изменением – это одно из основных свойств биологических систем. Принцип Франческо Реди – «подобное порождает подобное» – проявляется на всех уровнях организации жизни:
– на молекулярном уровне молекулы ДНК воспроизводят сами себя;
– на клеточном уровне любая клетка происходит от клетки;
– на онтогенетическом (организменном) уровне организмы порождают подобные себе организмы;
– на популяционно-видовом уровне популяции каждого вида воспроизводят себя и дают начало популяциям того же вида;
1. Общее представление о генетике как о науке.
2. Генетика человека: понятие, предмет, особенности, задачи, разделы.
3. Человек как биологический объект.
4. Основные этапы развития генетики История развития генетики человека.
5. Элементы медицинской генетики.
6. Методы исследования генетики человека.
7. Клиническая генетика.
Особого внимания заслуживают исследования известного английского клинициста А. Гэррода (1857 - 1936 гг.), внесшего существенный вклад в изучение проблемы генетики человека. Его работа "Распространенность алкаптонурии: изучение химических особенностей" несла ряд новых идей. Гэррод первым обнаружил взаимосвязь между генами и ферментами, открыл врожденные нарушения обмена веществ и положил начало биохимической генетике. В настоящее время изучение наследственных болезней обмена веществ - наиболее актуальный раздел генетики человека.
Труды Гэррода, Адамса и других врачей - исследователей не были оценены при их жизни. Биологи обращали мало внимания на работы медиков. Изучение наследственности проводилось главным образом на растениях. К сожалению, Г. Менделю, как и другим 7 ученым, работавшим с растительными объектами, не были известны данные по генетике человека. В противном случае открытие законов генетики могло бы произойти значительно раньше.
В 1865 г. увидела свет знаменитая работа чешского ученого Г. Менделя "Опыты над растительными гибридами". Законы, открытые им, оставались незамеченными в течение 35 лет и только в 1900 г. были переоткрыты К. Корренсом (Германия), Э. Чермаком (Австрия) и Г. де Фризом (Голландия). С тех пор закономерности наследования, открытые Менделем, определяют развитие современной генетики, включая и генетику человека.
Изучая наследования признаков у гороха, Г. Мендель установил три закона:
1. Закон единообразия гибридов первого поколения;
2. Закон расщепления во втором поколении по фенотипу 3:1 (при моногибридном скрещивании);
3.Закон
независимого наследования
Успех чешского ученого был связан с разработкой принципиально нового методического подхода. Он:
-
ввел в науку новый
-
проводил строгий
- анализируя эти закономерности, пришел к выводу, что зародышевые клетки несут набор признаков, которые могут быть определены с помощью скрещиваний.
Опыты Г. Менделя и сделанные из них выводы стали предпосылкой для создания теории гена - основы современной генетики, а 1900 г. - год вторичного открытия законов Менделя - считается годом рождения генетики. Название новой науке было дано в 1906 г. английским ученым В.Бэтсоном (от латинского слова geneo - порождаю), а в 1909 г. датский генетик В. Иоганнсен предложил такие важные генетические термины, как ген, генотип и фенотип.
В 1903 г. американский антрополог Фараби, изучая родословные в нескольких поколениях, впервые установил, что брахидактилия (короткопалость) у челoвека наследуется по аутосомно-доминантному типу. Из этой работы следовал вывод о справедливости менделевских законов и для человека.
В 1900 г. К. Ландштейнер описал систему групп крови АВО.
В 1924 г. Ф. Бернштейн установил, что АВО-система групп крови контролируется серией множественных аллелей одного локуса. Спустя 25-30 лет был обнаружен резус-фактор (Rh) и показано, что гемолитическая желтуха новорожденных возникает из-за иммунологической несовместимости матери и плода. Эти открытия также указывали на применимость законов Менделя к наследованию признаков у человека.
В 1908 г. Г. Харди и В. Вайнберг независимо друг от друга пришли к выводу, что менделевские законы дают возможность объяснить распределение частоты генов из поколения в поколение в популяциях (от латинского - populus - население, народ) и условиях генетической стабильности популяции. Этот закон был установлен путем анализа наследственности человека и лег в основу популяционной генетики.
В 1919 г. Ю.А. Филипченко организовал кафедру генетики в Петроградском университете. В это же время Н.И. Вавилов сформулировал важнейший генетический закон - закон гомологических рядов в наследственной изменчивости. Одновременно в Москве Н.К. Кольцов создает свою генетическую школу.
В 20 гг. XX века начала интенсивно развиваться советская генетика. Под влиянием идей евгеники, которая получила широкое распространение в ряде стран Европы (Англия, Франция, Германия) и Америке в 1921 г. в Москве Н.К. Кольцовым было организовано Русское евгеническое общество, в 1922 г. в Петрограде Ю. А. Филипченко создал Бюро по евгенике.
Эти евгенические организации ориентировались на сугубо научные задачи в отличие от евгенических обществ других стран. Н.К. Кольцов, Ю.А. Филипченко и другие ученые проводили работы по генетике одаренности, изучая родословные выдающихся личностей. Однако эти исследования грешили методическими ошибками, противоречиями, определенным примитивизмом. Вместе с тем были в евгенических работах и положительные моменты. Так, Н.К. Кольцов и Ю.А. Филипченко правильно ставили вопрос о значении социальных условий в реализации индивидуальных особенностей человека, полностью отвергали насильственный путь улучшения наследственности человека. Кроме того, силами советских евгеников были собраны родословные выдающихся личностей, например, А.С. Пушкина, Л.Н. Толстого, А.М. Горького, Ф.И. Шаляпина и др.
К концу 20-х годов евгенические исследования в нашей стране были прекращены. Падала ее популярность и в других странах (кроме Германии). Число евгеничеких обществ быстро уменьшалось, журналы закрывались или переименовывались.
Конец 20-х - начало 30-х гг. ознаменовались значительными успехами в развитии генетики. Родилась и стала общепризнанной хромосомная теория наследственности, было установлено, что наследственность связана с генами, локализованными в хромосомах клеточных ядер, что гены в хромосомах расположены линейно и образуют группы сцепления.
В этот же период создается популяционная генетика. Большой вклад в развитие этого раздела внесли С.С. Четвериков, Р. Фишер, Н.П. Дубинин и Д.Д. Ромашев, Дж. Е. Холдейн и др.
В ряде стран, в том числе в нашей, начинает развиваться медицинская генетика. С 1932 по 37 гг. работал Московский медико-биологический институт им. М. Горького (позднее - Медико-генетический институт), возглавляемый С. Г. Левитом. При нем был организован Центр близнецовых исследований. Здесь изучались болезни с наследственным предрасположением - диабет, язвенная болезнь, аллергия, гипертоническая болезнь и др. Большой интерес имели цитогенетические работы по идентификации первых хромосом человека. Особого упоминания заслуживают труды талантливого генетика и клинициста- невропатолога С.Н. Давиденкова (1880-1961). Он первым поставил вопрос о 9 гетерогенности наследственных заболеваний и начал проводить медико-генетическое консультирование.
К концу 30-х гг. XX в. интерес к генетике человека начал снижаться. Сократилось и оставалось низким до начала 50-х гг. количество опубликованных работ.
В Советском Союзе с приходом к власти в биологической науке Т.Д. Лысенко все генетические исследования, включая и исследования по генетике человека, были запрещены. Генетика была объявлена "лженаукой". Августовская сессия ВАСХНИЛ (1948 г.) нанесла огромный вред теоретическим и практическим достижениям генетики, утвердив антинаучные идеи Т.Д.Лысенко. Такое положение сохранялось до начала 60-х гг.
Возрождение советской генетической науки началось после разоблачения "учения" Лысенко и шло по пути развития медицинской генетики. В 1964 г. был издан учебник В.П. Эфроимсона по медицинской генетике, в 1969 г. открыт Институт медицинской генетики под руководством Н.П. Бочкова (в настоящее время - Научно-исследовательский центр медицинской генетики РАМН), где начались широкие исследования по многим направлениям медицинской генетики.
В 50-х гг. получают широкое развитие исследования по радиационной генетике человека. Еще в 1927 г. американский исследователь Г. Меллер установил сильное мутагенное действие рентгеновских лучей. Это открытие показало опасность облучения половых клеток человека для последующих поколений, в силу чего человеку как объекту генетических исследований стало уделяться больше внимания.
С 1959 по 1962 гг. количество публикаций, симпозиумов, конференций по генетике человека быстро возрастало. Слияние генетики, цитологии, цитогенетики, биохимии способствовало формированию клинической генетики.
Усилиями ученых была
В 1944 г. было достоверно установлено, что передача наследственной информации связана с дезоксирибонуклеино-вой кислотой (ДНК). Это открытие явилось мощным фактором, стимулирующим изучение наследственности на молекулярном уровне. А благодаря созданию в 1953 г. Д. Уотсоном и Ф. Криком модели макромолекулярной структуры ДНК, началось углубленное изучение молекулярной, биохимической и иммуногенетики человека.
Убедительный пример значения фундаментальных исследований для практического здравоохранения дает история развития цитогенетики. В 1956 г. X. Тио и А. Леван установили, что в клетках человека содержится 46 хромосом, а спустя три года были открыты хромосомные болезни человека. В 1959 г. Дж. Лежен установил цитогенетическую картину возникновения синдрома Дауна (трисомия по 21-й хромосоме.). В это же время несколько ученых идентифицировали на хромосомном уровне синдром Тернера (ХО) и синдром Клайнфельтера (XXY). Одновременно была определена роль Y-хромосомы в определении пола человека.
В 1960 г. Р. Мурхед с коллегами разработали метод культивирования лимфоцитов периферической крови для получения метафазных хромосом человека, что позволило обнаруживать мутации хромосом, характерные для определенных наследственных болезней. Другим важным открытием для развития цитогенетики человека явилась разработка методов дифференциальной окраски хромосом. Благодаря ему стала возможна идентификация каждой хромосомы человека, а это резко повысило разрешающую способность цитогенетических методов.
Еще одним этапом развития современной генетики человека явилось картирование и локализация генов в хромосомах человека. Достижения цитогенетики, генетики соматических клеток, увеличение числа генетических маркеров способствовали успешному изучению групп сцепления. В настоящее время у человека установлено 23 группы сцепления. Эти данные нашли непосредственное применение в диагностике наследственных заболеваний и медико-генетическом консультировании.
Тесная связь современной генетики с химией, физикой, биохимией, физиологией, экологией, фармакологией и другими науками способствовала появлению новых разделов генетики: цитогенетики, радиационной генетики, иммуногенетики, фармакогенетики, экологической генетики .
Во второй половине XX в. начала интенсивно развиваться молекулярная генетика и генная инженерия, были разработаны методы искусственного и ферментативного синтеза генов. В 1969 г. индийский ученый Г. Карано впервые осуществил искусственный синтез гена. С помощью генной инженерии получены искусственные гены инсулина, интерферона, соматотропина и др. Эти достижения открывают большие перспективы в диагностике, профилактике и лечении наследственных болезней человека.
Возможности молекулярной генетики и развитие современных методов работы с ДНК нашли применение для решения практических задач медицинской генетики.
Конец XX в. ознаменован разработкой и началом осуществления грандиозной международной программы "Геном человека". Ее задача - изучение генома человека, включая картирование хромосом и секвенирование их ДНК, определение полной нуклеотидной последовательности генома, состоящего из трех миллиардов пар нуклотидов. В рамках этой программы разрабатываются методы диагностики и лечения наследственных болезней. В настоящее время уже возможна ДНК- диагностика более 100 наследственных дефектов. В недалеком будущем станет реальностью генотерапия наиболее распространенных болезней человека, патогенез которых уже известен.
5. Элементы медицинской генетики.
Медицинская генетика (или клиническая генетика, генопатология)
-
область медицины, наука, которая
изучает явления
-
раздел общей генетики, изучающий
наследственные заболевания
Наследственными называют заболевания, обусловленные изменениями генетической информации, возникшими на различных этапах фило- и онтогенеза вследствие мутаций при воздействии различных эндо- и экзогенных причин.
В детском возрасте, начиная с периода новорожденности, проявляется более 2000 наследственных заболеваний, многие из которых возможно диагностировать еще в пренатальном периоде и на ранних этапах эмбриогенеза. Кроме того, более 50% хронических заболеваний детей и взрослых имеют генетическую детерминацию. Этим объясняется важная роль знаний вопросов общей и клинической генетики в практике акушеров, педиатров и врачей различной специальности.
Медицинская генетика изучает (предмет)
• роль наследственности в патологии человека
• закономерности передачи от поколения поколению наследственных болезней
• разрабатывает методы диагностики, лечения и профилактики наследственной патологии, включая болезни с наследственной предрасположенностью
• Указанное направление синтезирует медицинские и генетические открытия и достижения, направляя их на борьбу с болезнями и улучшение здоровья людей.
Известно более 4000 наследственных болезней человека. 2,5 % новорожденных имеют наследственные болезни. 40% случаев ранней детской смертности и инвалидности обусловлено наследственной патологией.