Лекции по "Навигационной гидрометеорологии"

Автор работы: Пользователь скрыл имя, 27 Февраля 2015 в 11:54, курс лекций

Краткое описание

В это же время другой итальянец, сын выходца из Венеции, переселившегося в Англию, Себастьян Кабот, предпринял плавание на запад тоже для открытия пути в Китай. Правильно предположив, что в большей широте переход будет короче, он вышел весной 1497 г. из Бристоля и открыл Лабладор. Во второе плавание 1498 г. Кабот открыл Ньюфаундленд, заметил Лабладорское холодное течение и, обследовав берега Америки до м. Хаттерас, вернулся в Англию. Себастьян Кабот был первым из мореплавателей, который сознательно воспользовался для ускорения плавания течением Гольфстрима.

Содержание

Введение
Часть 1. Навигационная метеорология
I. ОСНОВЫ ДИНАМИЧЕСКОЙ МЕТЕОРОЛОГИИ
1.1. Общие сведения об атмосфере
1.1.1. Состав и строение атмосферы
1.1.2. Основные метеорологические величины.
1.1.3. Организация гидрометеорологических наблюдений на судах.
1.2. Тепловой режим атмосферы
1.2.1. Нагревание и охлаждение поверхности Земли и атмосферы.
1.2.2. Суточные и сезонные колебания температур.
1.2.3. Распределение температуры в тропосфере.
1.2.4. Географическое распределение температуры воздуха.
1.2.5. Обледение судов.
1.2.6. Измерение температуры воздуха на судне.
1.3. Пар в атмосфере
1.3.1. Кругооборот воды в природе.
1.3.2. Испарение и характеристики влажности.
1.3.3. Конденсация.
1.3.4. Туманы.
1.3.5. Облака.
1.3.6. Осадки.
1.4. Атмосферное давление и ветер
1.4.1. Формы барического рельефа.
1.4.2. Измерение атмосферного давления на судне.
1.4.3. Ветер. Причины ветра.
1.4.4. Геострофический ветер.
1.4.5. Приземный ветер
1.4.6. Градиентный и циклострофический ветер.
1.4.7. Пассаты, муссоны и местные ветры.
1.4.8. Наблюдения за ветром на судне.
1.5. Оптические, электрические и акустические явления в атмосфере
1.5.1. Оптическая атмосферная рефракция.
1.5.2. Видимость.
1.5.3. Рефракция электромагнитных волн в тропосфере.
1.5.4. Акустические явления в атмосфере.
1.5.5. Грозовое электричество.
II. ОСНОВЫ СИНОПТИЧЕСКОЙ МЕТЕОРОЛОГИИ
2.1. Формирование погоды
2.1.1. Воздушные массы.
2.1.2. Атмосферные фронты.
2.1.3. Циклоны и антициклоны.
2.1.4. Тропические циклоны.
2.2. Прогноз погоды
2.2.1. Синоптический метод изучения погоды.
2.2.2. Метеорологическая информация и ее источники.
2.2.3. Метеорологические коды.
2.2.4. Анализ синоптических карт и вспомогательных материалов.
2.2.5. Прогноз синоптического положения и условий погоды в районе нахождения судна.
2.2.6. Использование спутниковой информации в анализе и прогнозе погоды.
Список литературы

Прикрепленные файлы: 1 файл

Tunegolovec V.P. - Lekcii po navigacionnoy gidrometeorologii - 2002 g(200c).doc

— 3.70 Мб (Скачать документ)

Если бы на Земле отсутствовали океана и атмосфера, то поступающая от Солнца энергия нагревала бы Землю до температуры, при которой обратное излучение стало бы равным приходящей радиации. Согласно закону Стефана-Больцмана, средняя температура абсолютно черного тела для Земли, которая нужна, чтобы достичь этого равновесия, составляет 250 °К (-23°С). Она называется планетарной температурой Земли. Эта температура значительно ниже, чем средняя температура поверхности Земли (288 °К). Это достигается по той причине, что заметная часть энергии, излучаемая земной поверхностью, поглощается или отражается атмосферой обратно к поверхности Земли.

Из рис. 1.2.5 видно, что длина волны, на которую приходится максимум в спектре излучения для абсолютно черного тела с температурой 285 °К, близкой к средней температуре поверхности Земли (средняя температура Земли 15 °С, т.е. 288 °К), составляет около 10 мк и почти все излучение происходит на длинах волн более 4 мк. (Для сравнения, максимум приходящей от Солнца радиации приходится на длину волны около 0,5 мк) Поэтому данная величина (4 мк) принята за рубеж, который разделяет “коротковолновую” солнечную радиацию от “длинноволновой” радиации Земли.

Рис. 1.2.5. Распределение интенсивности радиации по длинам волн для черного тела с поверхностной температурой 285 °К (представляющего в данном случае Землю) и схема поглощения этой радиации водяным паром, двуокисью углерода и озоном. 

 

Некоторые атмосферные газы обладают способностью к поглощению длинноволновой радиации: это водяной пар, двуокись углерода и озон. Они поглощают практически всю радиацию Земли, имеющую длины волн менее 8 мк и более 12 мк. Но между этими значениями остается “радиационное окно”, через которое при ясном небе радиация излучается в космическое пространство.

Облака могут как поглощать, так и отражать длинноволновую радиацию. Газы, составляющие атмосферу, которые поглощают уходящую радиацию Земли, в свою очередь излучают во всех направлениях, в том числе и в космос, но некоторая часть энергии возвращается на Землю. Таким образом, они действуют как слой изоляции вокруг Земли, подобно стеклянным стенкам парника, поэтому такое воздействие на температуру Земли носит название парникового эффекта.

Количество двуокиси углерода в атмосфере увеличилось за последние 70 лет на 10%, в том числе как результат сжигания топлива. Как полагают некоторые ученые, это оказывает огромное влияние на величину парникового эффекта, и с этим может быть связано изменение глобальной температуры атмосферы.

Баланс между приходящей и уходящей радиацией достигается в результате изменения температуры Земли. Если приходящая радиация увеличивается, температура Земли повышается, что в свою очередь приводит к росту величины уходящей радиации. Вследствие этого баланс восстанавливается на уровне более высокой температуры.

Как упоминалось выше, средняя температура Земли при отсутствии океана и атмосферы была бы 250 °К, при этом на экваторе она была бы 270 °К, На южном полюсе 150 °К, а на Северном полюсе 170 °К. Фактически поверхность Земли значительно теплее, а контраст между температурой на экваторе и на полюсах значительно меньше. И более высокая температура, и меньшие контрасты ее между полюсом и экватором определены наличием океана и атмосферы. Меньшие чем теоретические контрасты связаны с тем, что атмосфера и океан способны переносить тепло от одной области к другой, влияя тем самым на баланс энергии.

Основная часть приходящей радиации поглощается на поверхности нашей планеты, будь то вода или суша, после прохождения через атмосферу. Земная поверхность нагревает атмосферу как своим длинноволновым излучением, так и в результате передачи тепла на границе океан-атмосфера или Земля-атмосфера, что приводит к развитию в атмосфере конвекции. Теплоперенос сам по себе мог бы привести к весьма небольшой передаче тепла. Однако он необходим, чтобы тепло было передано только через исключительно тонкий слой мощностью в несколько миллиметров или даже меньше. Дальше тепло передается в процессе вертикального движения воздуха, которое может возникнуть вследствие термической конвекции или как результат горизонтального движения воздушного потока над неровной поверхностью (турбулентная конвекция). Вследствие этого на границе двух сред будет поддерживаться некоторый градиент температур, и поэтому теплоперенос будет осуществляться достаточно быстро.

Существует еще один очень важный процесс, при котором солнечное тепло передается в атмосферу. Это испарение с водной поверхности и конденсация влаги в атмосфере. На каждый грамм воды, испарившейся с поверхности океана, требуется около 2,47 103 джоулей тепла, которое водяной пар приобретает в виде скрытого тепла и которое высвобождается и поступает в атмосферу при его конденсации.

Был сделан ряд попыток определить тепловой баланс океана. Было показано, что расходная часть теплового баланса океана на широтах от 70° с. ш. до 70° ю. ш. на 41% определяется уходящей длинноволновой радиацией, на 5% передачей в атмосферу и на 54% на испарение. Разумеется, в различных местах на земном шаре и в разные сезоны эти величины могут заметно изменяться, но в целом можно сказать, что именно испарение воды приводит к наибольшей потере тепла, в то время как роль кондуктивной передачи тепла с последующими конвективными процессами в атмосфере наименее важна.

Высказанное справедливо в том случае, если средняя температура воды на поверхности океана больше, чем температура воздуха над ней, и, что еще важнее, если упругость водяного пара над поверхностью океана ниже, чем упругость насыщенного пара воздуха при температуре, которую имеет поверхность воды. При таких условиях происходит испарение воды. Однако из этого общего правила существуют важные исключения. Например, в районе Большой Ньюфаундлендской Банки весной температура воздуха превышает поверхностную температуру воды, что приводит к передаче тепла из атмосферы в океан, и на поверхности океана и непосредственно над ней происходит конденсация водяного пара и образуется туман. Вследствие этого поверхностные воды становятся более теплыми и, соответственно, менее плотными, а воздух над ними охлаждается и становится более плотным. В обеих средах в итоге термическая конвекция подавляется, передача тепла идет сравнительно медленно, за исключением тех случаев, когда дуют сильные ветры.

Горизонтальный перенос тепла – адвекция - необходим для того, чтобы компенсировать потерю тепла в результате излучения в высоких широтах и приток тепла в низких широтах (рис. 1.2.6). Смена дефицита и избытка в годовом радиационном балансе происходит примерно на 37° северной и южной широты. Если бы адвекции тепла не существовало, то температуры в экваториальном поясе возросли бы на 10°С, в то время как в полярных широтах они уменьшились бы более чем на 20°С. Это привело бы к значительному увеличению площади поверхности Земли, покрытой льдом и снегами, что в свою очередь вызвало бы увеличение альбедо в средних и высоких широтах, и соответствующие площади охладились бы еще сильнее.

Большинство оценок показывает, что более 80% переноса тепла происходит в атмосфере, где в результате глобальных процессов циркуляции теплый воздух и водяной пар вместе с его скрытой теплотой конденсации переносятся по направлению к полюсам Земли.

Новейшие оценки теплового баланса Земли, выполненные по данным искусственных спутников, показали, однако, что в области между экватором и 70° с.ш. в среднем 40% в этом переносе энергии приходится на долю океана, а на 20° с. ш. этот вклад достигает 74%. Ветры и океанские течения не только выравнивают баланс тепла между низкими и высокими широтами, но и сами зависят от неравномерности распределения тепла на земной поверхности. Эта неравномерность служит источником энергии, поддерживающей их движение. 

 

Рис 1.2.6. Многолетние средние величины поступающей радиации (коротко- и длинноволновой) и уходящей радиации для системы Земля-атмосфера в среднем по широтным зонам (по Дж. С. Джонсону).  

 

Суточные и сезонные колебания температур. Суточные колебания температуры связаны с изменением величины приходящей солнечной радиации и уходящей в течение суток (рис. 1.2.7).

Рис. 1.2.7. Поступающая коротковолновая радиация (I), уходящая длинноволновая радиация (R) и температура (Т) вблизи поверхности Земли в течение суток.

С полночи до восхода солнца при отсутствии притока тепла уходящая длинноволновая радиация обеспечивает уменьшение температуры воздуха. Минимум ее наступает спустя час после восхода, когда отмечается равенство уходящей и приходящей радиации. В дальнейшем I — R становится положительным, Т и R также возрастают, однако после полудня I начинает уменьшаться, но остается больше R только примерно в течение последующих трех часов. В это время вновь выполняется равенство приходящей и уходящей радиации и Т достигает своего максимума.

Аналогичным образом можно рассмотреть и сезонные колебания температуры вблизи поверхности Земли (рис. 1.2.8). В этом случае, используя среднесуточные значения приходящей радиации, вариации ее во времени можно представить в виде синусоиды, имеющей максимум в день летнего солнцестояния, а минимум - в день зимнего солнцестояния. Максимум и минимум температур обычно достигается примерно спустя месяц после соответствующего солнцестояния.

Рис. 1.2.8. Суточные средние величины поступающей коротковолновой радиации (I), уходящей длинноволновой радиации (R) и температура (Т) вблизи поверхности Земли в течение года. 

 

Основные особенности описанного выше процесса можно видеть на примере графика температур во внутриконтинентальной области (см. кривую I на рис. 1.2.9). В приморских районах (например, на островах или на побережье морей) эти особенности проявляются менее четко, диапазон их изменений меньше, а максимумы и минимумы в течение дня или года достигаются позднее (см. кривую II на рис. 1.2.9).

Это происходит вследствие следующих причин:

а) проникновения тепла на большие глубины (главным образом из-за процессов конвекции, но также и в результате того, что вода прозрачна для солнечной радиации);

б) большей теплоемкости воды по сравнению с сушей;

в) большей скрытой теплоты плавления льда и испарения воды: вода может как приобрести тепло без повышения температуры, когда происходит испарение, так и отдать тепло без уменьшения температуры, когда происходит ее замерзание.

Рис. 1.2.9. Вариации температуры воздуха: (а) суточные для июля и (б) годовые: (I) для района города Бисмарк, расположенного в центральной материковой части Северной Америки (46°48' с.ш., 510 м над уровнем моря) и (II) для города Форт-Вильям, расположенного на побережье Шотландии (59°49' с. ш., 50 м над уровнем моря). 

 

Годовой ход температуры воздуха над морем в среднем параллелен годовому ходу температуры поверхности моря (рис. 1.2.10).

Отклонения; наблюдаются лишь впервые летние месяцы, когда под воздействием солнечной радиации температура воздуха повышается несколько быстрее, чем температура поверхностного слоя моря. Максимум температуры наблюдается в августе, минимум —в марте (в северном полушарии), т. е. имеет место запаздывание времени наступления экстремальных температур на 1-2 месяца по сравнению с континентами. Вследствие этого весна над океаном оказывается холоднее осени, на суше — наоборот.

Рис. 1.2.10. Годовой ход температуры: 1 — воздуха; 2 — поверхности моря в районе 48—49° с. ш. и 24—26° з. д. (Северная Атлантика) 

 

Амплитуда годового хода температуры воздуха примерно на 15% больше амплитуды годового хода температуры поверхности воды. Максимум амплитуд наблюдается в широте 30—40°, где амплитуда примерно равна 6—10°С. По направлению к экватору от этого района, годовая амплитуда уменьшается и достигает на экваторе 2°С, однако в средних широтах западных районов океанов в результате влияния, континентов и холодных воздушных масс она возрастает до 10—20°С. 

 

Распределение температуры в тропосфере. Распределение температуры воздуха в нижних слоях атмосферы определяется главным образом его теплообменом с земной поверхностью. Естественно, что с высотой, по мере удаления от земной поверхности, температура воздуха понижается.

Для средних условий в тропосфере вертикальный градиент температуры γср= 0,657/100 м. Однако во многих случаях фактический градиент температуры может существенно отклоняться от среднего значения, особенно в слое трения и в самом .нижнем приводном (приземном) слое.

В связи с тем, что температура воды обычно выше температуры воздуха, над морем вблизи водной поверхности почти всегда существует тонкий слой воздуха, характеризующийся градиентом температуры γ>1°/100 м. Толщина этого слоя увеличивается с ростом разности температур. Так, при скорости ветра 6 м/с и разности температур на поверхности моря и на уровне 5 м, равной 0,5°, толщина этого слоя 6 м, а при разности температур 2,0° - около 20 м. Этот слой характеризуется интенсивной термической турбулентностью.

При определенных условиях над сушей и океаном возникают слои инверсии, которые имеют большое значение для хода различных атмосферных процессов. Температурные инверсии являются задерживающими слоями, гасящими вертикальные движения воздуха. Они играют также большую роль в процессах распространения электромагнитных и звуковых волн в атмосфере.

Температурные инверсии могут развиваться в приземном слое атмосферы (приземные инверсии) и в свободной атмосфере. Над океанами инверсионные условия в приводном слое встречаются значительно реже, чем над сушей. В свободной атмосфере инверсии встречаются одинаково часто как над сушей, так и над морем.

Существует несколько различных процессов, порождающих приземные инверсии.

Радиационные инверсии в нижнем слое воздуха наблюдаются в основном на суше и над морскими районами, сплошь покрытыми льдами. Эти инверсии возникают в результате охлаждения подстилающей поверхности за счет длинноволнового излучения. Особенно сильные приземные инверсии возникают при ясном небе и слабом ветре. Вместе с охлаждением земной поверхности происходит понижение температуры и в прилетающем к ней слое воздуха. Подобные условия встречаются летом только в ночное время, а зимой они могут сохраняться и днем. Мощность ночных инверсий колеблется от 5—10 м до сотен метров. Зимние инверсии по высоте достигают 2—3 км. Радиационные инверсии сравнительно часто сопровождаются туманами, носящими название, радиационных.

Адвективные инверсии образуются как над сушей, так и над морем, когда теплая воздушная масса перемещается на холодную подстилающую поверхность. По своей интенсивности эти инверсии уступают радиационным, и их мощность редко достигает нескольких сотен метров. Характерным примером таких инверсий являются инверсии, образующиеся при перемещении теплого воздуха на холодное течение (например, Лабрадорское, Ойя-Сио) или же с открытых морских районов на районы, покрытые льдом (у границы льдов). Часто эти инверсии сопровождаются адвективными туманами. 

Информация о работе Лекции по "Навигационной гидрометеорологии"