Проектирование однокорпусной выпарной установки непрерывного действия для выпаривания водного раствора производительностью по исходно

Автор работы: Пользователь скрыл имя, 08 Января 2014 в 16:53, курсовая работа

Краткое описание

Выпаривание – это процесс концентрирования растворов твердых нелетучих веществ путем частичного испарения растворителя при кипении жидкости.
Выпаривание применяют для концентрирования растворов нелетучих веществ, выделения из растворов чистого растворителя (дистилляция) и кристаллизации растворенных веществ, т.е. нелетучих веществ в твердом виде. При выпаривании обычно осуществляется частичное удаление растворителя из всего объема раствора при его температуре кипения. Поэтому выпаривание принципиально отличается от испарения, которое, как известно, происходит с поверхности раствора при любых температурах ниже температуры кипения. В ряде случаев выпаренный раствор подвергают последующей кристаллизации в выпарных аппаратах, специально приспособленных для этих целей.

Содержание

Введение 4
1 Аналитический обзор 6
2 Цели и задачи проекта 8
3 Основная часть 9
4 Инженерные расчеты 11
4.1 Расчёт выпарного аппарата 11
4.2 Расчёт барометрического конденсатора 18
4.3Расчёт производительности вакуум-насоса 20
4.4 Ориентировочный расчет теплообменных аппаратов 21
5 Выводы по проекту 24
Список используемых источников 25

Прикрепленные файлы: 1 файл

страхова.docx

— 187.70 Кб (Скачать документ)

Откуда 

 

4.3 Расчет производительности вакуум-насоса

 

Производительность вакуум-насоса определяется количеством газа (воздуха), который необходимо удалять из барометрического конденсатора:

 

 

где – количество газа, выделяющегося из 1 кг воды;

01 – количество газа, подсасываемого в конденсатор через не плотности, на 1 кг паров.

 

 

 

Объемная  производительность вакуум-насоса равна:

 

 

где – универсальная газовая постоянная ;

 – молекулярная масса воздуха M = 29 кг/кмоль;

 – температура воздуха, ;

 – парциальное давление сухого воздуха в барометрическом конденсаторе, Па.

 

Температуру воздуха рассчитывают по уравнению:

 

 

 

 

Давление воздуха равно:

 

 

где – давление сухого насыщенного пара при

 – давление в барометрическом конденсаторе,

 

Методом интерполяции по формуле (11) найдем давление сухого насыщенного пара

 

 

 

Рассчитаем  давление воздуха по формуле (47)

 

 

 

Объемная  производительность вакуум-насоса по формуле (45) равна:

 

 

Зная  объемную производительность и остаточное давление по [1] выбираем вакуум-насос типа ВВН-6 мощностью на валу 12.5 кВт.

 

 

4.4 Ориентировочный расчет подогревателя исходного раствора.

 В подогревателе раствор нагревается от начальной температуры tисх. =30оС (указана в задании) до температуры t =71 С, при которой он поступает в выпарной аппарат. В качестве греющего агента используется первичный греющий пар с tгр.п.=108.7о С. Так как, пар конденсируется при постоянной температуре, то взаимная схема движения теплоносителей (прямоток, противоток) не влияет на величину средней разности температур.

Вычислим среднюю разность температур

                   (48)

 

Где - разности температур теплоносителей на концах теплообменника.

 

 

 

где tгр.п. – температура конденсации греющего пара, 0С;

tисх. – температура начальная температура разбавленного раствора, 0С;

tн. – температура разбавленного раствора на входе в выпарной аппарат, 0С.

 

Так как, пар конденсируется при постоянной температуре то средняя температура нагревающегося раствора tср.р. равна:

                                                            (49)

 

 

Для определения тепловой нагрузки аппарата Q, Вт, рассчитаем количество теплоты, необходимой для нагревания разбавленного раствора от начальной температуры до температуры, при которой он подается в выпарной аппарат.

 

 

где  сн=4105 Дж/кг∙К – удельная теплоемкость разбавленного раствора при tср.р.=53.70С и хн=0.02

 

Дж/кг*К

 

Выберем из [1] ориентировочное значение коэффициента теплопередачи, К=1000 Вт/м2∙К, соответствующее данному виду теплообмена (от конденсирующегося пара к водному раствору).

Подставив полученные значения в (37), найдем площадь поверхности теплообмена подогревателя:

  м2

 

С учетом 20% запаса по поверхности теплообмена, по [1] выбираем стандартный аппарат: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена F = 9м2, с трубами Æ 25´2 мм, диаметром кожуха D=273мм, длиной труб l=3м.

 

На основе теплового баланса рассчитаем требуемый расход греющего пара Gп для подогревателя:

 

кг/с

 определяем по паровой  таблице из  [2] путем  интерполяции  по формуле (11):

 

 

4.5 Ориентировочный расчет холодильника концентрированного раствора.

Концентрированный раствор выводится из выпарного аппарата и поступает в теплообменник при температуре. В соответствии с заданием он охлаждается до температуры . Начальная температура охлаждающей воды, , конечная температура, , обычно принимается на 10–20 больше, чем. Примем:

                                        (50)

 

Выберем противоточную схему движения теплоносителей, так как в этом случае величина средней разности температур Δtср. будет больше, чем в прямоточной схеме. Вычислим среднюю разность температур по (48)

 

oC

 

Так как, температура воды в теплообменнике изменяется на меньшее число градусов, по сравнению с температурой раствора, то среднюю температуру воды определим по формуле:

                                                         (51)

Среднюю температуру охлаждающегося концентрированного раствора найдем по формуле:

                                                                 (52)

 

Для определения тепловой нагрузки аппарата Q, Вт, рассчитаем количество теплоты, выделяющейся при охлаждении концентрированного раствора по формуле (53):

 

        

 

 

где Gк=0.44 кг/с - расход концентрированного раствора;

с = 4477- удельная теплоемкость концентрированного раствора при и хк =0.1 кг раств. вещества/кг раствора

 

 

Дж/кг*К

 

 

Выберем ориентировочное значение коэффициента теплопередачи, К=800 Вт/м2∙К, соответствующее данному виду теплообмена (от водного раствора к воде).

Подставив полученные значения в (37), найдем площадь поверхности теплообмена холодильника:

 

м2

С учетом 20% запаса по поверхности теплообмена, по [1] выбираем стандартный аппарат: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена F=4.5м2, с трубами Æ 25´2 мм, диаметром кожуха D=273мм, длиной труб l=1.5м.

 

На основе теплового баланса рассчитаем требуемый расход охлаждающей воды Gв для холодильника:

 

 кг/с

 , при

Дж/кг*К

 

 

 кг/с.

 

 

 

5 Выводы по проекту

 

В данной курсовой работе представлен  процесс выпаривания раствора .

 

1. В соответствии с заданием разработана технологическая схема однокорпусной выпарной установки.

2. В результате проведенных расчетов выбрано следующее стандартное оборудование:

  • выпарной аппарат с естественной циркуляцией и вынесенной греющей камерой со следующими параметрами: площадь поверхности теплообмена 280 м2 , высота кипятильных труб 5 м
  • подогреватель исходного раствора: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена F = 9м2, с трубами Æ 25´2 мм, диаметром кожуха D=273мм, длиной труб l=3м;
  • барометрический конденсатор - диаметр 0.79 м, барометрическая труба- диаметр 0.2 м, высота – 8  м;
  • вакуум насос типа ВВН-6 мощностью 12.5 кВт.
  • холодильник концентрированного раствора: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена F=9м2, с трубами Æ 25´2 мм, диаметром кожуха D=273мм, длиной труб l=3 м.

 

Список использованных источников

 

  1. Борисов Г.С., Брыков В.П., Дытнерский Ю.И./Под редакцией Дытнерского Ю. И., 2-е изд., перераб. и доп. – М.: Химия, 1991. -496 с.

 

  1. Павлов К.Ф.,  Романков П.Г.,  Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов/Под ред. чл.- корр. АН России П.Г. Романкова. – 11-е изд., стереотипное. Перепечатка с изд. 1987г.- М.: ООО «РусМедиаКонсалт», 2004.- 576 с.

 

  1. Марков А.В., Маркова А.В. Неразборные теплообменники «труба в трубе» (конструкции и основные размеры): Метод. указания /СПб.: СПбГТИ(ТУ),  2001.-30 с.

 


Информация о работе Проектирование однокорпусной выпарной установки непрерывного действия для выпаривания водного раствора производительностью по исходно