Автор работы: Пользователь скрыл имя, 08 Января 2014 в 16:53, курсовая работа
Выпаривание – это процесс концентрирования растворов твердых нелетучих веществ путем частичного испарения растворителя при кипении жидкости.
Выпаривание применяют для концентрирования растворов нелетучих веществ, выделения из растворов чистого растворителя (дистилляция) и кристаллизации растворенных веществ, т.е. нелетучих веществ в твердом виде. При выпаривании обычно осуществляется частичное удаление растворителя из всего объема раствора при его температуре кипения. Поэтому выпаривание принципиально отличается от испарения, которое, как известно, происходит с поверхности раствора при любых температурах ниже температуры кипения. В ряде случаев выпаренный раствор подвергают последующей кристаллизации в выпарных аппаратах, специально приспособленных для этих целей.
Введение 4
1 Аналитический обзор 6
2 Цели и задачи проекта 8
3 Основная часть 9
4 Инженерные расчеты 11
4.1 Расчёт выпарного аппарата 11
4.2 Расчёт барометрического конденсатора 18
4.3Расчёт производительности вакуум-насоса 20
4.4 Ориентировочный расчет теплообменных аппаратов 21
5 Выводы по проекту 24
Список используемых источников 25
Санкт-Петербургский
Государственный
(Технический Университет)
Кафедра процессов и аппаратов
Факультет 8
Курс 3
Группа
Учебная дисциплина:
Химико-технологические процессы и производства
Курсовой проект
Тема: Проектирование однокорпусной выпарной установки непрерывного действия для выпаривания водного раствора производительностью по исходному раствору.
Руководитель: Борисова
Е.И.
Санкт-Петербург
2012
Задание по курсовому проектированию № 4
Спроектировать однокорпусную выпарную установку непрерывного действия для выпаривания водного раствора. Обеспечить подогрев исходного раствора перед подачей в выпарной аппарат и охлаждение концентрированного раствора после выпарного аппарата.
Перечень инженерных расчетов.
Расчет и выбор по каталогу выпарного аппарата, холодильника концентрированного раствора, подогревателя исходного раствора, барометрического конденсатора с барометрической трубой, вакуум-насоса.
Дополнительные указания:
Состав графической части: технологическая схема выпарной установки, чертеж теплообменного аппарата.
Исходные данные:
Растворенное вещество:
Производительность по исходному раствору
Содержание растворенного вещества:
Начальное –
Конечное –
Давление в аппарате (изб.)
Начальная температура раствора
Температура охлаждающей воды .
Температура концентрированного раствора после охлаждения
Теплообменный аппарат: холодильник.
Содержание
Введение
1 Аналитический обзор 6
2 Цели и
задачи проекта
3 Основная
часть
4 Инженерные расчеты 11
4.1
Расчёт выпарного аппарата
4.2
Расчёт барометрического конденсатора
4.3Расчёт производительности вакуум-насоса 20
4.4 Ориентировочный расчет теплообменных аппаратов 21
5 Выводы по
проекту
Список используемых источников 25
Выпаривание
– это процесс
Выпаривание применяют для концентрирования растворов нелетучих веществ, выделения из растворов чистого растворителя (дистилляция) и кристаллизации растворенных веществ, т.е. нелетучих веществ в твердом виде. При выпаривании обычно осуществляется частичное удаление растворителя из всего объема раствора при его температуре кипения. Поэтому выпаривание принципиально отличается от испарения, которое, как известно, происходит с поверхности раствора при любых температурах ниже температуры кипения. В ряде случаев выпаренный раствор подвергают последующей кристаллизации в выпарных аппаратах, специально приспособленных для этих целей.
Для нагревания выпариваемых растворов до кипения используют топочные газы, электрообогрев и высокотемпературные теплоносители, но наибольшее применение находит водяной пар, характеризующийся высокой удельной теплотой конденсации и высоким коэффициентом теплоотдачи.
Процесс выпаривания проводится в выпарных аппаратах. По принципу работы выпарные аппараты разделяются на периодические и непрерывно действующие.
Периодическое выпаривание применяется при малой производительности установки или для получения высоких концентраций. При этом подаваемый в аппарат раствор выпаривается до необходимой концентрации, сливается и аппарат загружается новой порцией исходного раствора.
В установках непрерывного действия исходный раствор непрерывно подается в аппарат, а упаренный раствор непрерывно выводится из него.
В этом курсовом проекте
используется выпарная установка, работающая
под вакуумом. Для создания вакуума
в выпарной установке обычно применяют
конденсаторы смешения с барометрической
трубой. В качестве охлаждающего агента
используют воду, которая подаются
чаще всего при температуре
В химической промышленности в основном применяют непрерывно действующие выпарные установки с высокой производительностью за счет большой поверхности нагрева (до 2500 м2 в единичном аппарате).
Наибольшее применение
в химической технологии нашли выпарные
аппараты поверхностного типа, особенно
вертикальные трубчатые выпарные аппараты
с паровым обогревом
В зависимости от режима движения кипящей жидкости в выпарных аппаратах их разделяют на аппараты со свободной, естественной и принудительной циркуляцией, пленочные выпарные аппараты, к которым относятся и аппараты роторного типа.
В данном проекте используется аппарат с естественной циркуляцией, с вынесенной греющей камерой и кипением в трубах. В этом аппарате циркуляция раствора осуществляется за счет различия плотностей в отдельных точках аппарата. Выпариваемый раствор, поднимаясь по трубам, нагревается и по мере подъема вскипает. Образовавшаяся парожидкостная смесь направляется в сепаратор, где происходит разделение жидкой и паровой фаз.
Высота парового пространства должна обеспечивать сепарацию из пара капелек жидкости, выбрасываемых из кипятильных труб.
Вторичный пар, проходя сепаратор и брызгоотделитель, освобождается от капель, а раствор возвращается по циркуляционной трубе в греющую камеру.
В таких аппаратах
облегчается очистка
Поскольку циркуляционная
труба не обогревается, создаются
условия для интенсивной
Процессы выпаривания проводят под вакуумом, при повышенном и атмосферном давлениях. Выбор давления связан со свойствами выпариваемого раствора и возможностью использования тепла вторичного пара.
Выпаривание под вакуумом имеет определенные преимущества перед выпариванием при атмосферном давлении, несмотря на то, что теплота испарения раствора несколько возрастает с понижением давления и соответственно увеличивается расход пара на выпаривание 1 кг растворителя (воды). Применение вакуума дает возможность проводить процесс при более низких температурах, что важно в случае концентрировании растворов веществ, склонных к разложению при повышенных температурах. Также дает возможность использовать в качестве греющего агента, кроме первичного пара вторичный пар самой выпарной установки, что снижает расход первичного греющего пара. Вместе с тем при применении вакуума удорожается выпарная установка, поскольку требуются дополнительные затраты на устройства для создания вакуума (конденсаторы, ловушки, вакуум-насосы), а так же увеличиваются эксплуатационные расходы.
При выпаривании под давлением выше атмосферного также можно использовать вторичный пар, как для выпаривания, так и для других нужд не связанных с процессом выпаривания. Такой способ выпаривания позволяет лучше использовать тепло, чем при выпаривании под вакуумом. Этот способ применяется лишь для выпаривания термически стойких веществ. Кроме того, необходимы греющие агенты с более высокой температурой.
При выпаривании под атмосферным давлением вторичный пар не используется и обычно удаляется в атмосферу. Такой способ выпаривания является наиболее простым, но наименее экономичным.
Простейшими выпарными аппаратами со свободной циркуляцией раствора являются периодически действующие открытые выпарные чаши с паровыми рубашками (для работы под атмосферном давлении) и закрытые котлы с рубашками, работающие под вакуумом. Поверхности нагрева рубашек и соответственно нагрузки этих аппаратов очень невелики. Значительно большей поверхностью нагрева в единице объема обладают змеевиковые выпарные аппараты. Выпарные аппараты со свободной циркуляцией раствора в настоящее время вытеснены в большинстве производств выпарными аппаратами более совершенных конструкций, в частности вертикальными трубчатыми аппаратами.
В вертикальных аппаратах с направленной естественной циркуляцией раствора выпаривание осуществляется при многократной естественной циркуляции раствора. Они обладают рядом преимуществ сравнительно с аппаратами других конструкций, благодаря чему получили широкое применение в промышленности. Основным достоинством таких аппаратов является улучшение теплоотдачи к раствору при его многократной организованной циркуляции в замкнутом контуре, уменьшающей скорость отложения накипи на поверхности труб. Кроме того, большинство этих аппаратов компактны, занимают небольшую производственную площадь, удобны для осмотра и ремонта.
В
аппаратах с внутренней нагревательной
камерой и центральной
В
аппаратах с подвесной
Конструкции
аппаратов с выносными
Аппарат
с выносной нагревательной камерой
работает при более интенсивной
естественной циркуляции, обусловленной
тем, что циркуляционная труба не
обогревается, а подъемный и опускной
участки циркуляционного
В
аппаратах с вынесенной зоной
кипения кипящий раствор не соприкасается
с поверхностью теплообмена, что
уменьшает отложение накипи. В
этих аппаратах значительно
Принципиальное отличие прямоточных аппаратов с естественной циркуляцией состоит в том, что выпаривание в них происходит при однократном прохождении выпариваемого раствора по трубам нагревательной камеры, выпаривание осуществляется без циркуляции раствора. В таких аппаратах достигается снижение температурных потерь, обусловленных гидростатической дисперсией.
В
роторных прямоточных аппаратах
достигается интенсивный