Состав магистрального газопровода

Автор работы: Пользователь скрыл имя, 06 Марта 2013 в 21:38, реферат

Краткое описание

Магистральный газопровод — это сложная система сооружений, предназначенных для транспортировки газа из районов его добычи или производства в районы потребления.
Магистральный газопровод характеризуют высоким давлением (до 55—75 кгс/см2), поддерживаемым в системе, большим диаметром труб (1020, 1220, 1420 мм) и значительной протяженностью (сотни и тысячи километров).

Содержание

1. Магистральный газопровод ………………………………………………..…… 3
2. Головные сооружения ……………………………………………………………6
3. Подземные хранилища газа (ПХГ) ……………………………………….…10
4. Газораспределительные станции ………………………………………………13
5. Блок очистки газа.............................................................................. 21
6. Блок подогрева газа ……………………………. …………...........................…..29
7. Список использованной литературы ………………………………….………37

Прикрепленные файлы: 1 файл

Магистральный транспорт газа.docx

— 1.43 Мб (Скачать документ)

Принцип действия фильтра-осушителя  основан на способности влагопоглотителя поглощать большое количество влаги при малом объеме.

Для автоматического сброса из газосепаратора в подземную емкость уловленного конденсата применяют регулирующие клапаны непрямого действия типов К. При подаче командного давления (газа) на мембрану исполнительного механизма клапан открывается.

Регулирующие клапаны состоят  из регулирующего органа (клапана) и мембранно-исполнительного механизма (МИМ). Перемещение золотника относительно седла клапана осуществляется под действием командного газа на мембрану исполнительного механизма, который соединен с золотником посредством штока. Если давлениекомандного газа на МИМ увеличивается, мембрана опускается, пружина сжимается и шток с золотником опускается, открывая проходное сечение седла клапана для сброса конденсата из газосепаратора в подземную емкость. Из подземной емкости конденсат перекачивается в передвижную надземную емкость для дальнейшей транспортировки.

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Блок подогрева газа

Наибольшие трудности при редуцировании газа возникают из-за образования гидратов, которые в виде твердых кристаллов оседают на стенках трубопроводов в местах установки сужающих устройств, на клапанах регуляторов давления газа, в импульсных линиях контрольно-измерительных приборов (КИП). Наиболее благоприятны для образования гидратов падение температуры и давления, что влечет за собой уменьшение как упругости водяных паров, так и влагоемкости газа, в результате чего происходит образование гидратов.

В качестве методов по предотвращению гидратообразования применяют общий или частичный подогрев газа; местный обогрев корпусов регуляторов давления и ввод метанола в коммуникации газопровода.

Наиболее широко применим первый метод, второй — менее аффективен, третий — очень дорогостоящий.

Для общего подогрева газа применяют огневые (ПГА-5, ИГА-10, ПГА-100, ПГА-200 и ПТА-1) и водяные [ПГ-3, ПГ-10, 9ПГ64-2М (ЗМ), ПТПГ-30 и ПТГ-15] подогреватели. Для эксплуатации ПГ-3 и 9ПГ64-2М(ЗМ) необходимы мощные котельные установки, стационарные или передвижные, а также постоянные инженерные коммуникации по водоснабжению, канализации и электроснабжению.

Поскольку химическая подготовка и очистка воды отсутствует, происходит быстрое нарастание накипи на внутренних стенках водопроводных труб, уменьшающих проходное сечение последних, что приводит к плохому теплообмену между горячей водой и газом, к утрате эффективности подогрева  газа теплообменниками.

Рис. 6-1. Схема водяного подогревателя газа ПГ-3

 

 

Водяные подогреватели ПГ-3 и 9ПГ64-2М (ЗМ) представляют собой теплобменные аппараты кожухотрубного типа (рис. 6-1).

Огневые подогреватели одинаковы по конструкции (рис. 6-2), отличаются техническими данными. Основные элементы этих подогревателей: огневая камера (состоит из основания, боковых и торцевых стенок, крышки), змеевик, горелка, байпасная линия, установка термобаллонов, контрольно-запальное устройство, дымовая труба, блок автоматики контрольно-запального устройства и автоматика регулирования (включает в себя отсекатель, фильтр, регулятор давления, регулятор температуры, сбросной и электромагнитный клапаны, терморегулятор

В керамзито-бетонном основании (рис. 6-2) огневой камеры находится наклонная горелочная щель, служащая стабилизатором горения газа. Подощелевая горелка, расположенная под основанием огневой камеры в горелочной щели, представляет собой трубу с огневыми отверстиями по ее образующей. Пламя направляется на боковую радиационную стену, которая, раскалившись, излучает тепло, нагревающее змеевик. Часть змеевика, расположенная в верхней части огневой камеры, нагревается теплом отходящих газов. Краны служат для отключения змеевика подогревателя на летний период или для ремонтных работ. Газ в этом случае, минуя змеевик, проходит по байпасному газопроводу.

Автоматика   регулирования   и   защиты   размещена   на   сварной раме и закрыта кожухом.  В дымовой трубе расположен шибер, с помощью   которого   можно   регулировать  тягу   в   разные   периоды года.

 




 

Рис. 6-2. Огневой подогреватель газа ПГА-5.

1— основание огневой камеры: 2 — горелки: 3 — горелочная щель: 4 — контрольно-запальное устройство; 5 — радиационная часть змеевика: 6 — боковые стенки подогревателя: 7 — конвективная часть змеевика: 8 — крышка. 9 — дымовая труба: 10 — шибер.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Температуру газа на выходе из подогревателя в заданных пределах от 5 до 60° С поддерживают с помощью терморегулятора.


Терморегулятор (рис. 6-3). Термометрическая система его состоит из баллона и сильфона, заполненных жидкостью с большим коэффициентом теплового расширения. Изменение температуры газа на выходе из подогревателя ведет к изменению в термосистеме объема и давления жидкости. При этом сильфон сжимается или разжимается, перемещая шток, который связан с большим и малым фигурными рычагами отсекателя Малый фигурный рычаг поднимает или опускает клапан терморегулятора.

Если температура газа выше заданной на выходе из подогревателя, жидкость в термосистеме расширяется и сжимает сильфон. Вследствие этого шток, преодолевая усилие пружины, поднимается вверх, освобождая конец большого фигурного рычага. что в свою очередь ведет к освобождению клапана, который садится на седло и закрывает проход топливного газа к горелкам.

Датчик (рис. 6-4). Предназначен для подачи сигнала на диспетчерский пункт линейно-производственного управления (ДП ЛПУ) или в дом оператора (ДО) в случае погасания пламени запальника подогревателя газа.

При горении  запальника мембрана находится в нижнем положении и удерживает контакт микропереключателя в разомкнутом состоянии. При погасании запальника электромагнитный клапан закрывает подачу  газа  на  газопроводе  запальника.   При  этом   давление газа  в газопроводе запальника  и в датчике падает. Мембрана под действием пружины перемешается  вверх.   Контакты   микропереключателя  замыкаются   и на ДП ЛПУ  или в ДО подается сигнал «Авария».

 




Рис. 6-4. Датчик.

1 — мембранная головка; 2 — мембрана; 3 — шток; 4 — коробка; 5 — микропереключатель: 6 — рычаг; 7 — пружина; 8 — штуцер; НЗ — нормально закрыто. HP — нормально          открыто.

 

 

Рис. 6-3. Терморегулятор.

1— клапан 2 — шток; 3 — сильфон;

4 — баллон; 5 — отсекатель.



 

 

 

 

Электромагнитный клапан (рис. 6-5). Перекрывает подачу топливного газа к горелке в случае погасания пламени запальника, фиксируя три положения:

1) закрытое, когда газ через клапан не проходит;

2) промежуточное, когда газ через клапан запальника проходит;

3) рабочее, когда газ через клапан поступает и на запальник, и на горелку.

До начала работы подогревателя электромагнитный клапан закрыт. Чтобы включить запальник, необходимо нажать на пусковую кнопку. В этом случае подвижная система штоков и клапанов переместятся вниз. Клапан займет нижнее положение, а верхний сядет на седло. При этом топливный газ будет поступать через отверстие к запальнику, но не к горелке. В течение 1 мин пламя запальника нагреет спай термопары, в ней возникнет электродвижущая сила (ЭДС), образующая в электромагните магнитное поле, которое притягивает якорь к торцам электромагнита до тех пор, пока на запальнике будет гореть газ.

Под действием нижней пружины подвижная  система из штоков. клапанов и кнопки поднимется вверх. При этом верхний клапан отойдет от своего седла на 2.5 мм и откроет доступ топливному газу к горелке. Нижний клапан не дойдет до своего седла на 2,5  мм, и газ будет продолжать поступать к запальнику. При погасании пламени на запальнике якорь под действием усилии пружины 16 вместе со всей подвижной системой поднимается вверх Клапан сядет на седло и прекратит поступление газа к горелке и к запальнику.

 

Рис. 6-5. Клапан электромагнитный.

1. 14 — штоки: 2 — кнопка; 3. 16 — пружины; 4 — кожух. 5 — якорь; 6 — электромагнит; 7 — обмотка электромагнита; 8 — основание; 9 — прижимное кольцо; 10 — корпус; 11 — мембрана; 12. 15 — клапаны (12 — верхний. 15 — нижний); 13 — отверстие. 17 — пробка 

 

 

Термопара. Выполнена из двух сплавов: хромеля (никель + хром) и копеля (никель + медь) — и представляет собой хромелевую трубку, в которую вставлен копелевый стержень. Принцип работы термопары заключается в том, что при ее нагревании тепловая энергия преобразуется в электрическую.

Подача топливного газа в подогреватели  осуществляется после блок» редуцирования. Топливный газ высокого или среднего давления (6 или 3 кгс/см2 ) редуцируют до низкого (500 мм вод. ст) в регуляторах давления газа РД-32, РД-50М, которые устанавливают у каждого подогревателя или в отдельной газорегуляторной установке (ГРУ). Эти установки монтируют в помещениях редуцирования или в котельной. ГРУ снабжает газом низкого давления не только газопотребляюшие установки ГРС (котлы, подогреватели), но и газовые водонагревательные и отопительные аппараты ДО (водонагреватели, 4-конфорочные плиты, газовые холодильники и пр.).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

1. Суринович В.К., Борщенко Л.И.  «Машинист технологических компрессоров»,  -  М.: Недра, 1986.-280 с.

2. Волков М.М. и др., «Справочник  работника газовой промышленности»,  -М.: Недра, 1989.-286с.

3. Правила технической эксплуатации  магистральных газопроводов, М.: Недра,  1989.

4. Правила технической эксплуатации  компрессорных цехов с газотурбинным  приводом.  М. 1976.

5. Сборник типовых эксплуатационных  формуляров и инструкций по  эксплуатации и техническому обслуживанию систем и оборудования компрессорных станций с газотурбинным приводом, ч. 1,2. Приложение к «ПТЭ компрессорных цехов с ГТУ», М.: 1976.

6. Козаченко А.Н. «Эксплуатация  компрессорных станций магистральных  газопроводов», - М.: Нефть и газ, 1999-459 с.

7. Андреев Г.С. «Запорная арматура», - М.: Недра, 1974.

8. Фриман Р. Э., Иванов С. А., Бородавкин П. П., «Магистральные газопроводы. Основные сведения». М.: Недра, 1976.

9. Тихомиров Е.Н. «Монтаж, наладка  и эксплуатация устройств электрохимической  защиты», М.: Недра, 1976.

10. Данилов А.А., Петров А.И. «Газораспределительные  станции». С-П.: Недра, 1997.

11. Положение по технической  эксплуатации газораспределительных  станций магистральных газопроводов. М.: Недра, 1990.

12. Беззубов А.В., Козобков А.А., Шварц А.И. «Устройство и монтаж технологических компрессоров», М.: Недра, 1985.

13. СНиП 2.05.06-85. Магистральные трубопроводы. М., ЦИТП Госстроя СССР, 1985.

14. СНиП III-42-80. Магистральные трубопроводы. Госстой СССР. М.,

 

 


Информация о работе Состав магистрального газопровода