Автор работы: Пользователь скрыл имя, 17 Декабря 2012 в 18:56, курсовая работа
О надежности и долговечности машины судят обычно по стабильности рабочих характеристик, заложенных в ней при изготовлении. В условиях эксплуатации стабильность рабочих характеристик двигателя может нарушаться вследствие многих причин, вызывающих неисправности его механизмов и систем. Неисправности могут возникнуть в результате нарушения регулировок, устранимых в процессе эксплуатации, или вследствие естественного износа деталей сопряжений, не устранимого простой регулировкой.
При нагреве и охлаждении деталь перемещают относительно источников на грева ТВЧ и охлаждения со скоростью не более 3 – 4 мм/с, а температуру нагрева устанавливают при этом не более 870–920° С.
В результате создания температурного
градиента возникают резко
Результаты исследования показывают, что при создании в полой детали осевого температурного градиента ней появляется пластическая деформация (уменьшение внутреннего диаметра).
Пластическая деформация наблюдается как у детали, изготовленной из чугуна, так и из стали.
Величина деформации зависит от целого ряда факторов, основными из которых являются максимальная температура нагрева и форма температурного поля в детали, физико-механические свойства материала детали, скорость перемещения источников нагрева и охлаждения относительно детали, геометрические размеры детали, интенсивность охлаждения.
Процесс осуществляется следующим образом. Чугунная деталь – гильза двигателя устанавливается на стол устройства. Затем со скоростью 1,5 мм/с относительно индуктора гильза перемещается с непрерывно-последовательным нагревом внутренней поверхности до 870 °С и охлаждением струями воды с температурой 200С и расходом 15 л/мин. При этом величина радиальной деформации Е составляет в среднем 0,7 мм. Затрата подготовительного, основного и заключительного времени на восстановление одной гильзы составляет 2 мин.
3.4.7 Способ постановки ремонтных втулок
Данный способ восстановления внутренней поверхности гильз цилиндров внутреннего сгорания позволяет увеличить процент повторно используемых гильз, так как появляется возможность ремонтировать гильзы при износе внутренней поверхности, превышающем 0,4 мм,
Способ осуществляется следующим образом. Измеряют зону износов 1 внутренней рабочей поверхности гильзы 2, на наружной поверхности которой от верхней кромки делают проточку 3 на длину, на 5… 10 мм превышающую зону износов внутренней рабочей поверхности гильзы. Глубина проточки не должна превышать 0,5 толщины стенки гильзы. Вычитают ремонтную стальную втулку 4, конфигурация которой соответствует удаляемому участку гильзы. Внутренний диаметр втулки 4 и наружный диаметр проточенной части гильзы 2 подбирают с учетом допуска на прессовую посадку.
На рис. 3.9 а, б представлены соответственно гильза и ремонтная втулка на подготовительной стадии; на рис. 3.9 в-гильза, прошедшая восстановительный ремонт.
Наружную поверхность втулки вытачивают с допусками на последующую доводку до номинальных размеров гильзы после операции напрессовки. Изготовленную втулку 4 нагревают до 300…400 °С и насаживают на подготовленный участок гильзы. При охлаждении втулки происходит обжим гильзы, за счет чего восстанавливается внутренний диаметр гильзы. В заключение обрабатывают внутреннюю и наружную поверхности гильзы под номинальные размеры.
а)
Рис. 3.9. Способ восстановления постановкой втулки:
а – гильза; б – ремонтная втулка; в-гильза с напрессованной втулкой.
Данный способ прост в изготовлении, не требует приобретения дополнительного оборудования, но имеет ряд недостатков: ухудшается охлаждение гильзы за счет ухудшения теплоотвода, так как нарушена однородность материала; для различных гильз необходимо изготавливать различные втулки, что удорожает производство и усложняет технологический процесс.
4. Конструктивная разработка
4.1 Устройство и работа
Особенностью восстановления внутренней
поверхности гильз гальваномеха
Существуют установки для нанес
Приспособление состоит из корпуса (8, рис. 5.1), установленного на опорной плите (7), которая крепится на столе хонинговального станка 8Б833. Закрепление гильзы (11) происходит за счет призм (9), которые перемещаются по резьбе за счет вращения вала, на котором они расположены. На опорный бурт гильзы устанавливается кожух (10) для отвода электролита в ванну и защиты деталей приспособления. Рядом со станком устанавливаются две ванны с электролитом и водой. Ванны через трубопроводами связаны с насосами для подачи электролита (2) и воды (17) соответственно. Ванны снабжены датчиками контроля температуры и нагревательными элементами для поддержания постоянной температуры.
Рис. 4.1. Схема гальваномеханического способа нанесения покрытий:
1 – ванна с электролитом; 2, 17 – насосы; 3, 6 – кран-распределитель; 4 – нагнетательный трубопровод; 5 – трубопровод отвода электролита; 7 – монтажная плита; 8 – корпус; 9 – призмы; 10 – защитный кожух; 11 – восстанавливаемая гильза; 12 – токосъемное устройство; 13 – электрод-инструмент; 14 – электрод; 15 – хонинговальные бруски; 16 – ванна с водой
Далее трубопроводы соединяются через кран-распределитель (3), который связан через нагнетательный трубопровод (4) с корпусом приспособления. К режущему инструменту (электрод-инструмент) (13) прикреплены электроды (14), которые подсоединены к источнику питания через токосъемное устройство (12). На гильзу (электрод-деталь) также подается напряжение через призмы.
Для хромироованиия был выбран универсальный электролит (состав, г/л: CrO3 – 250, H2SO4 – 2,5) как наиболее стабильный и высокопроизводительный, обеспечивающий нанесение качественных покрытий в диапазоне катодной плотности тока Dk = 50…1000 А/дм2 и температуры электролита tэл= 35…55ºC.
Для гальваномеханического
При исследованиях по определению химической стойкости абразивных и алмазных брусков на керамической, бакелитовой, каучуксодержащей, эпоксидной и титановых связках было установлено, что наивысшей химической стойкостью в выбранных электролитах хромирования и железнения обладают абразивные бруски из электрокорунда белого, карбида кремния зеленого, а также алмазные на титановой и каучукосодержащей связках Р9 и PI4. Однако дальнейшее использование выбранных инструментов при гальваномеханичеоком хромировании и железнении показало, что алмазные бруски на титановой связке в процессе электролиза поляризуются и происходит их активное электрохимическое растворение, а также водородное охрупчивание, вследствие чего их использование становится нецелесообразным.
Так, лучшее качество покрытий достигается при гальваномеханическом хромировании при использовании абразивных (24AM40IIC2KII, 64СМ4СПСМ210Б), минералокерамических ВОК-60 и алмазных брусков (ACM 40/28-PI4E – 100%), а при железнении данным способом – соответственно абразивных (63С40ПСТ1Б, 64СМ40ПСМ2К10) и алмазных (КАБХ ACBI25/I00 BС-2, АББХ АСО 80/63 PI8T 100%) [7].
Варьируя катодной плотностью тока Dk и величиной давления инструмента Ра можно управлять формированием структуры покрытий и величин пористости.
Выявлено, что увеличение Dk, Pa и снижение tэл способствуют увеличению маслоемкости и смачивающейся способности покрытий хрома и железа, которая выше у аналогичных покрытий, полученных другими способами.
Наиболее существенное влияние на производительность гальваномеханического способа нанесения покрытий оказывают температура электролита, катодная плотность тока и тип применяемого инструмента. Замечено, что при гальваномеханическом хромировании производительность увеличивается в 20…50 раз, а при железнении по сравнению со стационарными условиями электролиза – в 5…10 раз.
4.2 Принцип действия
В процессе работы электролит из ванны (1) за счет действия насоса (2) поступает через кран-распределитель (3) по нагнетательному трубопроводу (4) в корпус приспособления. Подача воды осуществляется одновременно с электролитом. Кран-распределитель (3) настраивается на подачу воды в количестве, равном количеству испарившейся воды в процессе нанесения покрытия. Электролит попадает в корпус, где затем под действием электрического тока соприкасается с внутренней поверхностью гильзы. Далее через кожух по трубопроводу электролит поступает обратно в ванну. Процесс циркуляции электролита непрерывен на протяжении всей стадии нанесения покрытия.
5. Разработка технологической
Технологический процесс восстановления гильзы сводится к растачиванию гильзы (для восстановления геометрии внутренней поверхности цилиндра), гальваномеханическому процессу нанесения покрытий (декапирование 15…85 с, нанесение покрытия с выходом на режим в течение 8…10 мин, с плавным увеличением плотности тока до оптимального), последующей промывке детали в проточной воде, их нейтрализации и ополаскиванию.
Таким образом для восстановления внутренней поверхности гильзы Д-240 необходимо провести операции:
– растачивание на станке 278Н;
– электрохимическое хонингование на станке 3Б833;
– промывка детали.
5.1 Расточка гильзы
Число проходов [11]:
, (5.1)
где h – припуск на обработку, мм (h = 0,2);
t – глубина резания, мм (t = 0,2);
.
Выбираем значение подачи [11]:
S = 0,3 мм/об.
Скорость резания [11]:
Vp = 65 м/мин.
Определяем число оборотов, об/мин [11]:
, (5.2)
где D – диаметр детали, мм;
Из технического паспорта станка выбираем обороты меньшие расчетных nф = 160 об/мин.
Фактическая скорость резания с учетом выбранной частоты вращения:
м/мин (5.3)
Основное время, мин [10]:
(5.4)
где l – длина обрабатываемой поверхности детали, мм;
у – величина врезания и перебега режущего инструмента, мм.
мин
Вспомогательное время [11]:
Твсп = 2,9 + 0,5 = 3,4 мин (5.5)
Дополнительное время [11]:
(5.6)
где Топ = То + Твсп – оперативное время, мин;
Кдоп – процентное отношение
дополнительного времени к
Штучное время, мин [11]:
Тшт = То + Твсп +Тдоп = 5,21 + 3,4 + 0,6 =9,21 (5.7)
Подготовительно-заключительное время [10]:
Тпз = 9 мин
Норма времени, мин [11]:
(5.8)
где – количество деталей в партии, шт. [11].
где К= 0,04…0,25 – показатель эффективности использования оборудования. Принимаем К = 0,2.
5.2 Гальваномеханическое
Гальваномеханическое
Параметры хонингования выбираются экспериментально [7]:
i = 1;
значение подачи: S = 10 мм/об;
число оборотов: n = 400 об/мин.
Фактическая скорость резания с учетом выбранной частоты вращения:
м/мин
Основное время будет равно
продолжительности осаждения
То = 32,5 мин
Вспомогательное время:
Твсп = 1 + 0,6 = 1,6 мин.
Дополнительное время:
Для хонингования Кдоп = 9
мин.
Штучное время:
Тшт = 32,5 + 1,6 + 3,07 = 37,17 мин.
Подготовительно-заключительное время:
Тпз = 7 мин
шт.
Принимаем nшт = 2 шт.
Норма времени для расточки, мин:
мин.
Норма времени для хонингования, мин:
мин.
5.3 Промывка гильзы
Промывают гильзы в проточной воде, затем сушат в сушильном шкафу (t = 200С, = 10 мин).
Технологическая карта восстановления гильзы цилиндра двигателя Д-240 представлена 8-ым листом графической части.
6. Охрана труда
гильза цилиндр
6.1 Меры безопасности при ремонте гильз ДВС
Безопасность
Информация о работе Разработка технологии восстановления гильз цилиндров ДВС