Автор работы: Пользователь скрыл имя, 22 Мая 2013 в 01:20, реферат
Транспорт как особо динамичная система всегда был одним из первых потребителей достижений и открытий самых различных наук, включая фундаментальные. Более того, во многих случаях он выступал прямым заказчиком перед большой наукой и стимулировал ее собственное развитие. Трудно назвать область исследований, не имевшую отношения к транспорту. Особенное значение для его прогресса имели фундаментальные исследования в области таких наук, как математика, физика, механика, термодинамика, гидродинамика, оптика, химия, геология, астрономия, гидрология, биология и другие. В неменьшей степени транспорт нуждался и нуждается в результатах прикладных исследований, проводимых в области металлургии, машиностроения, электромеханики, строительной механики, телемеханики, автоматики, а в последнее время электроники и космонавтики. В свою очередь некоторые открытия и достижения, полученные в рамках собственно транспортных наук, обогащают другие науки и широко используются во многих нетранспортных сферах народного хозяйства.
Введение
Электромобиль
Автомобиль, движущийся по рельсам
Монокар
Беспилотные самолеты
Гелиотранспорт
Монорельсовые дороги
Моторвагонные поезда
Скоростной пассажирский трубопровод
Индивидуальные летательные аппараты
Заключение
Литература
Рисунок 5.1. .Американский беспилотный самолет "макси"-класса «Глобал Хоук»
Сегодня создается, по сути, летающуя платформа для аппаратуры наблюдения. Соединив полезную нагрузку с бортовыми системами, можно получить полноценный интегрированный комплекс, максимально оснащенный радиоэлектронным оборудованием (рис.5.2). Это будет качественно новый вид авиационной техники - стратосферная платформа для решения задач, которые либо не по силам низко-, средневысотным пилотируемым и беспилотным машинам, либо требуют неоправданно больших затрат при выполнении их спутниковыми группировками.
Рисунок 5.2. Многоцелевой беспилотный летательный аппарат "Протеус" производства США
Весь мир уже
осознал, какую пользу и экономию
могут принести беспилотные летательные
аппараты не только в военной, но и
в гражданской сфере. Их возможности
во многом зависят от такого параметра,
как высота полета. Сегодня предел
составляет 20 км, а в перспективе
и до 30 км. На такой высоте беспилотный
самолет может конкурировать
со спутником. Отслеживая все, что происходит
на территории площадью около миллиона
квадратных километров, он сам становится
своего рода "аэродинамическим спутником".
Беспилотные самолеты могут взять
на себя функции спутниковой
На "беспилотники" можно возложить непрерывное круглосуточное наблюдение за поверхностью Земли в широком диапазоне частот. Используя их, можно создать информационное поле страны, охватывающее контроль и управление движением воздушного и водного транспорта, поскольку эти машины в состоянии взять на себя функции наземных, воздушных и спутниковых локаторов (совместная информация от них дает полную картину того, что делается в небе, на воде и на земле).
Потребность мирового
рынка в беспилотных
Рисунок 5.3. Потребности мирового рынка в беспилотных авиационных системах с большой высотой и продолжительностью полета.
Сферы применения гражданского беспилотного самолета
ОБНАРУЖЕНИЕ МАЛОРАЗМЕРНЫХ ОБЪЕКТОВ:
УПРАВЛЕНИЕ ВОЗДУШНЫМ ДВИЖЕНИЕМ:
КОНТРОЛЬ МОРСКОГО СУДОХОДСТВА:
РАЗВИТИЕ РЕГИОНАЛЬНЫХ
И МЕЖРЕГИОНАЛЬНЫХ
АЭРОФОТОСЪЕМКА И КОНТРОЛЬ ЗЕМНОЙ ПОВЕРХНОСТИ:
КОНТРОЛЬ ЭКОЛОГИЧЕСКОЙ
ОБЕСПЕЧЕНИЕ СЕЛЬХОЗРАБОТ И ГЕОЛОГОРАЗВЕДКИ:
ОКЕАНОЛОГИЯ:
5. Гелиотранспорт
Электромобили, солнцемобили, солнечные велосипеды, электромоторные суда с солнечными батареями - все эти экологически чистые транспортные средства появились всего лет 15-20 назад.
Солнцемобили в большинстве своем машины уникальные. В их конструкции используются оригинальные технические решения и новейшие материалы. Отсюда и очень высокая цена. Например, двухместный солнцемобиль "Мечта" (рис.6.1) обошелся японской автомобильной компании "Хонда" в 2 миллиона долларов. Но деньги были потрачены не напрасно. Трассу трансавстралийского ралли 1996 года протяженностью 3000 км он прошел со средней скоростью почти 90 км/ч, а на прямом скоростном участке достиг 135 км/ч. Рекорд "Мечты" до сих пор никем не побит.
Рисунок 6.1. Солнцемобиль-рекордсмен "Мечта"
Солнцемобиль - это электромобиль, снабженный фотоэлектрическими преобразователями (солнечными батареями) достаточно большой мощности, в которых энергия света преобразуется в электрический ток, питающий тяговый двигатель и заряжающий аккумуляторы.
Конструирование солнцемобилей и испытание их в гонках постепенно оформились в новый технический вид спорта - "брейнспорт".
У солнцемобилей достигнут минимальный для наземных экипажей коэффициент аэродинамического сопротивления (0,1). Опыт концерна "General Motors" при разработке рекордного солнцемобиля "Sunracer" ("Солнечный гонщик") (рис.6.2) использован в проектировании электромобиля "Impact" ("Удар"), серийное производство которого началось в 1996 г. Его скорость достигает 130 км/ч, до 100 км/ч он разгоняется за 9 с и на обычных свинцово-кислотных аккумуляторах проходит 100 км.
Рисунок 6.2. Солнцемобиль Sunraycer
Солнечные батареи небольшой мощности на обычных автомобилях кондиционируют воздух в салонах и подзаряжают пусковые аккумуляторы на стоянках, питают радио- и телеаппаратуру.
В начале ХХ века появились маломерные суда с двигателями внутреннего сгорания. Энергоемкость углеводородного топлива была значительно выше той, что могли дать гальванические батареи. Лодки и катера с мощными бензиновыми моторами очень быстро получили самое широкое распространение. А электромоторные суда и их сухопутные "братья" - электромобили - из-за ограниченного ресурса аккумуляторных батарей и сложности их зарядки до недавнего времени оставались исключительной редкостью.
На всех транспортных средствах с солнечным приводом есть аккумуляторы. Их емкость и вес зависят от назначения судна.
Первое электромоторное судно, приводимое в движение солнечной энергией, построил в 1975 году англичанин Алан Фримен. Его электрокатамаран развивал скорость до 5 км/ч. В наши дни, всего через четверть века, скорость электролодок с солнечными панелями возросла более чем вдвое, и их можно купить в магазинах спорттоваров, например, в Германии, Швейцарии и других странах.
Электромоторные суда на солнечных батареях не раз проходили испытания в длительных морских путешествиях. В 1985 году японский яхтсмен Кеничи Хори на "солнечном" катере "Сикрикерк" в одиночку пересек Тихий океан. За 75 суток он преодолел 8700 морских миль. Скорость 3-5 узлов, с которой "Сикрикерк" шел от Гавайских островов до острова Бонин вблизи западного побережья США, была близка к средней скорости 9-метровой крейсерской парусной яхты.
У "солнечного" судна есть немало преимуществ перед парусным: плавание на нем гораздо меньше зависит от капризов погоды, удобно и то, что можно пользоваться электрическими средствами связи и бытовыми приборами. Например, на катере Кеничи Хори работали холодильник, СВЧ-печь, телевизор и видеокамера, спутниковая навигационная система, радиолокатор, метеорологические приборы и бортовой компьютер. Путешественник взял с собой в одиночное плавание даже малогабаритную стиральную машину. Энергию для работы этих приборов вырабатывали солнечные панели площадью 9 м2 и общей мощностью 1100 Вт. Из них 500 Вт использовалось днем для работы гребного винта электродвигателя мощностью 0,33 кВт, 400 Вт - для зарядки аккумуляторной батареи, питающей двигатель ночью, 200 Вт - для бытовых нужд и работы радиостанции. Облегченные солнечные модули жестко крепились на крыше рубки и палубе "Сикрикерка". Тяжелые аккумуляторы располагались в трюмной части корпуса и служили балластом.
Экологически чистые транспортные средства, как наземные, так и водные, были представлены в международном экотуре "Финляндия-2000". Большой интерес специалистов и зрителей вызывала финская "солнечная" яхта "Сольвейг" с палубой, облицованной ярко-синими фотоэлектрическими модулями. Установленный на ней электромотор мощностью 1,5 кВт позволяет в солнечную погоду развивать скорость до 5 узлов. Шесть аккумуляторов емкостью по 125 А·ч, помещенные внутрь киля, повышают устойчивость судна. В просторной каюте достаточно места для длительного путешествия команды из четырех-пяти человек. Навигационные приборы, СВЧ-печь, холодильник, как и электромотор, получают энергию от солнечных батарей. Складывающаяся, чтобы свободно проходить под низкими мостами, мачта приспособлена для паруса.
В экотуре "Финляндия-2000" участвовала еще одна "солнечная" яхта изобретате ля Йорма Панкала, названная "Атон" (по имени древнеегипетского бога Солнца). Легкое судно, изготовленное из стеклопластика, по форме напоминает маленький авианосец. На его просторной палубе достаточно места для размещения солнечных панелей суммарной мощностью 1200 Вт. На "Атоне" нет мачты, но Й. Панкала намеревается оборудовать судно ветроэлектрогенератором на телескопической стойке и парусом в виде воздушного змея. На мелководье, где нельзя пользоваться гребным винтом, пропеллер реверсивного электрогенератора будет работать как воздушный движитель.
В днище яхты есть стеклянный иллюминатор. Его можно открыть и облиться морской водой. Осадка судна всего 25 см, поэтому невысокого бортика вокруг иллюминатора вполне достаточно, чтобы избежать затопления судна.
Экотур "Финляндия-2000" убедил всех, что "солнечные" лодки, катера и яхты пригодны для плавания даже в такой северной стране, как Финляндия, - летом там солнечных дней не намного меньше чем на юге. Они могут быть совершенно автономными даже в длительном плавании и подходят как для малых рек и озер, так и для открытых морей.
6. Монорельсовые дороги
Монорельсовые дороги были предложены почти 180 лет назад. Первая русская монорельсовая дорога с конной тягой была сооружена у села Мячково в 1820 г. В основном для перевозки леса. Действующую электрическую модель подобной дороги построил в Петербурге инженер И.В.Романов в 1897 г.
Современная монорельсовая дорога – это железобетонная или металлическая балка (рельс), поднятая на эстакаду, и подвижной состав (вагоны) на тележках с пневматическими шинами. Различают навесные дороги, где вагоны имеют нижнюю точку опоры и как бы сидят верхом на несущей балке, и подвесные системы, где вагоны подвешиваются к тележкам, опирающимся на балку. Каждый из названных типов дорог имеет свои преимущества и недостатки. Навесная дорога требует более сложной системы ходовых частей для обеспечения устойчивости вагонов. Кроме того, в неблагоприятных метеоусловиях монорельс (балка) покрывается льдом или снегом и практически выводит систему из строя или требует трудоемкой работы по ее очистке. Наряду с этим данный тип дороги позволяет иметь значительно (на 2-3 м) меньшую высоту опор эстакады и, следовательно, меньшую строительную стоимость (рис.7.1). Для подвесных дорог необходимы, наоборот, более высокие опоры, чтобы обеспечить надлежащий подъем пола (дна) кузова вагона над поверхностью земли (4,0-5,0 м), но ходовые части вагонов существенно упрощаются.
Рисунок 7.1. Внешний вид монорельсовой навесной дороги
Максимальная скорость движения на действующих дорогах составляет 70-125 км/ч, провозная способность – до 40 тыс. пасс/ч. Стоимость сооружения монорельсовых дорог примерно в 2 раза ниже стоимости подземного метрополитена.
В восьмидесятых годах учеными Физико - энергетического института АН Латвийской ССР был создан весьма оригинальный проект монорельса на магнитной подушке для перевозок со скоростью 500 километров в час.
Вагон предполагалось создать на базе уже проверенного в эксплуатации фюзеляжа транспортного самолета Ил-18 (рис.7.2). Длина такого вагона, по проекту вмещавшего 100 пассажиров, составляла 36 метров, ширина 3,5 метра, высота 3, 85 метра, а масса - 40 тонн. Под полом вагона размещались криостаты со сверхпроводящими магнитами, которые соединялись с кузовом через рессорное подвешивание. Преобразователи частоты управлялись бортовым компьютером.
Рисунок 7.2 Монорельс на магнитной подушке
7. Моторвагонные поезда
Начальный этап развития железных дорог характеризовался использованием пассажирских поездов исключительно на локомотивной тяге. С широким распространением электрической тяги появилась альтернатива этому решению в виде поезда, в котором тяговая мощность распределена по всей его длине. До сих пор в этом отношении не определилась единая тенденция, хотя в пригородных пассажирских перевозках практически везде используется принцип распределенной тяги.
На линиях облегченных городских железных дорог и трамвая гибкая и хорошо зарекомендовавшая себя концепция «моторный вагон + прицепной вагон» в конце 1950-х годов из-за больших расходов на персонал была заменена более современной, предусматривающей использование моторвагонных поездов из сочлененных вагонов с общим салоном.
На метрополитене и городских железных дорогах (S-Bahn), имеющих выход на магистральные линии, относительно высокая скорость движения и короткие расстояния между остановками требуют применения поездов с большим числом моторных осей. Еще в 1970 г. при разработке электропоезда серии 420 для городской железной дороги Мюнхена исходили из максимальной мощности системы тягового электроснабжения. Девятивагонный поезд с приводом на все оси имеет мощность продолжительного режима 7,6 МВт, развивает максимальную скорость 120 км/ч и ускорение при разгоне 1 м/с2.
Для пригородных и региональных пассажирских перевозок используют поезда на локомотивной тяге. Депо, осуществляющие техническое обслуживание пассажирских вагонов и локомотивов, были исторически разделены в системе железных дорог. Поезда на локомотивной тяге позволяли гибко реагировать на изменения пассажиропотока путем увеличения или уменьшения числа вагонов. К сожалению, станции многих больших городов являются тупиковыми на ответвлениях от магистральных линий. С введением уплотненных графиков движения время стоянки поездов S-Bahn и региональных необходимо было сокращать из-за недостаточной пропускной способности станций. Все указанные факторы говорили о том, что вместо смены локомотивов речь могла идти только об использовании челночных поездов с локомотивом в одном конце и вагоном с кабиной управления в другом. В качестве альтернативного варианта могут рассматриваться моторвагонные поезда.