Новые виды транспорта

Автор работы: Пользователь скрыл имя, 22 Мая 2013 в 01:20, реферат

Краткое описание

Транспорт как особо динамичная система всегда был одним из первых потребителей достижений и открытий самых различных наук, включая фундаментальные. Более того, во многих случаях он выступал прямым заказчиком перед большой наукой и стимулировал ее собственное развитие. Трудно назвать область исследований, не имевшую отношения к транспорту. Особенное значение для его прогресса имели фундаментальные исследования в области таких наук, как математика, физика, механика, термодинамика, гидродинамика, оптика, химия, геология, астрономия, гидрология, биология и другие. В неменьшей степени транспорт нуждался и нуждается в результатах прикладных исследований, проводимых в области металлургии, машиностроения, электромеханики, строительной механики, телемеханики, автоматики, а в последнее время электроники и космонавтики. В свою очередь некоторые открытия и достижения, полученные в рамках собственно транспортных наук, обогащают другие науки и широко используются во многих нетранспортных сферах народного хозяйства.

Содержание

Введение
Электромобиль
Автомобиль, движущийся по рельсам
Монокар
Беспилотные самолеты
Гелиотранспорт
Монорельсовые дороги
Моторвагонные поезда
Скоростной пассажирский трубопровод
Индивидуальные летательные аппараты
Заключение
Литература

Прикрепленные файлы: 1 файл

ETS.docx

— 360.63 Кб (Скачать документ)

 

 

 

2.  Автомобили, движущиеся по рельсам

 

Один из самых  смелых проектов представила датская  компания RUF International. Предлагаемая датчанами транспортная система представляет собой сеть монорельсовых дорог, по которым движется общественный и личный электротранспорт.

Небольшие участки  пути транспорт преодолевает по обычным  дорогам, после чего въезжает на рельсы и объединяется в своеобразные поезда.

Конструкция автомобиля, движущегося по рельсам представлена на рис. 3.1

 


Рисунок 3.1. Конструкция автомобиля, движущегося по рельсам

Вставшим на рельсы транспортом не нужно управлять — водитель задаёт программу — информация передаётся некоему "главному диспетчеру" и автоматическая система всё сделает сама, руководствуясь показаниями установленных повсюду, в том числе и под землёй, датчиков.

В случае необходимости, водитель сможет снова взять управление на себя. Подразумевается, что скорость езды по рельсам будет 120 км/час.

Согласно проекту RUF International, сеть дорог будет состоять из 25-километровых рельсовых участков со специальными "переходами" через каждые пять километров, чтобы одни водители могли присоединиться к "поезду", а другие свернуть или съехать с рельсов (рис.3.2-3.3). Максимальная скорость между "переходами" (150 км/час) при приближении к развязкам автоматически снижается до 30 км/час.

 

Рисунок 3.2. Переход на кольцевую линию

 

Рисунок 3.3. Переход с рельсов в дорожное полотно

Энергия для электромобилей подаётся непосредственно по монорельсу — это и обеспечивает электропитание во время движения в "поезде", и заряжает аккумуляторы для непродолжительной езды по обычным дорогам.

Машины для  транспортной системы RAF могут быть любыми — "легковушка", грузовик, автобус — но для езды по рельсам у всех у них должен быть V-образный канал, проходящий по днищу кузова машины (рис. 3.4).

 

Рисунок 3.4. Конструкция рельсов

Компания работает над своей концепцией с 1988 года. У RUF International 16 спонсоров, в числе которых нет ни одного автопроизводителя, но есть датский филиал Siemens и датские же министерства энергетики и окружающей среды.

Над аналогичным, но куда более реалистичным проектом работают англичане. Монорельсовый  проект под названием ULTra (Urban Light Transport) компании Advanced Transport Systems впервые будет реализован в 2004 году. А в январе 2002 года запустили экспериментальную  ветвь неподалёку от Бристоля в городе Кардифф (рис.3.5). Если результаты тестов будут признаны удовлетворительными, сети ULTra построят сначала в Кардиффе, а потом и в других городах Великобритании.

 

Рисунок  3.5. Фото экспериментальной ветви в Кардиффе

ULTra — это одна из форм персонального скоростного транспорта (Personal Rapid Transit — PRT). По сути, это монорельсовая дорога, по которой движутся небольшие полностью автоматизированные вагонетки — наземное метро, только без машинистов и, собственно, поездов.

Похожие на капсулы  небольшие вагонетки, рассчитанные на несколько человек, будут двигаться  по монорельсу со скоростью 25 км/час.

Проект ULTra, который ещё называют "такси без водителя" (driverless taxi), Advanced Transport Systems разрабатывала совместно со специалистами из Бристольского университета.

Первая построенная  в Кардиффе испытательная "ветка", по которой будет двигаться 30 "капсул", будет протяжённостью 1,5 км. В развитой сети количество вагонеток увеличится до 120. Движение каждой "капсулы" будет  контролироваться центральной системой посредством всевозможных датчиков.

Разработчики  утверждают, что, во-первых, их электротранспорт не загрязняет окружающую среду, во-вторых — он лёгкий (вес вагонетки 800 кг), в-третьих, им удалось "минимизировать визуальное вторжение" в архитектурный облик городов и окружающую среду, и, наконец, ULTra — безопасный транспорт.

 

 

 

3. Монокар

 

Существует концепция, которая объединяет преимущества мотоциклов и автомобилей. Это машина с кузовом автомобиля и двухколесной конструкцией ходовой части. Такая машина (монокар) может обладать комфортом, грузоподъемностью и безопасностью автомобиля и маневренностью, экономичностью и проходимостью мотоцикла.

Устойчивость  мотоцикла зависит от равновесия действующих на него сил. Мотоцикл может  быть устойчивым только при совпадении точки опоры и равнодействующих сил. При прямолинейном движении такая сила одна. Это сила тяжести, приложенная к центру масс и направленная вертикально вниз. Отклонений от точки  опоры она не имеет, следовательно, нет и опрокидывающей силы.

При движении по окружности на машину действует еще  и центробежная сила, направленная наружу и создающая опрокидывающий момент. Для удержания машины в  равновесии равнодействующая этих сил  должна проходить через точку  опоры. В мотоциклах баланс достигается  либо отклонением водителя в сторону, противоположную опрокидывающему  моменту, либо поворотом руля в сторону  наклона машины. То есть либо центр  тяжести отклоняется до совпадения с точкой опоры, либо точка опоры  отклоняется к центру тяжести. При  этом равновесие должно поддерживаться с высокой точностью, в противном  случае неизбежно опрокидывание  мотоцикла в сторону наибольшей действующей силы. Следовательно, устойчивость мотоцикла при движении по окружности зависит от:

  1. Скорости движения мотоцикла
  2. Радиуса поворота
  3. Угла наклона мотоцикла
  4. Смещения вылета переднего колеса

Предельный угол наклона машины зависит от конструкции  и формы кузова машины. Существует зависимость скорости движения и  безопасного радиуса поворота.

V2 = g * R* ctg a,

где V - скорость движения мотоцикла, м/сек,

g - ускорение свободного падения, 9,8 м/сек2,

R - радиус поворота  мотоцикла, м,

ctg a - котангенс угла наклона.

При выполнении этих условий переднее колесо нужно поворачивать к центру вращения.

Если требуется  пройти поворот с большей скоростью, то мотоцикл должен наклоняться на больший угол при вхождении в  поворот и переднее колесо мотоцикла  должно быть повернуто в сторону, противоположную повороту. Это делается для большего смещения точки опоры  мотоцикла к центру тяжести. Если для сохранения равновесия этого  недостаточно, то водитель отклоняет  тело от центра вращения до совпадения равнодействующих сил и точки  опоры. Для одноколейного транспортного  средства подобные маневры могут  быть невозможны из-за более широкого кузова.

Удельный расход топлива минимален при работе двигателя примерно на 80 % мощности и раза в 3-4 выше при 10 % процентах. Для  снижения таких расходов наиболее реально  применение гибридных двигателей, представляющих собой маховик в сочетании  с двигателем внутреннего сгорания или электромотором.

Монокар позволяет уменьшить потери энергии за счет таких решений:

Масса машины. Для снижения массы можно значительно упростить и облегчить конструкцию, удалив некоторые узлы и агрегаты.

Аэродинамическое  сопротивление. Создание кузова более обтекаемой формы. Современный автомобиль имеет коэффициент аэродинамического сопротивления Cx=0,4. Если попробовать сделать трехместный кузов в виде капли и разместить двух человек в широкой части и одного сзади в узкой, то можно получить коэфффициент Cx=0,2 или даже меньше.

У большинства  современных автомобилей он составляет 0,4. У монокара, благодаря более обтекаемой конструкции двухколесного кузова, он может быть равен 0,2 или даже меньше.

Зависимость мощности от скорости представлена на рис. 4.1.

 

Рисунок 4.1. Зависимость мощности от скорости

 

F = C х * Sm * P * V2  

где F - сила сопротивления  среды, H

Cx - коэффициент аэродинамического сопротивления,

Sm - мидель, м2

P - плотность среды,

V - скорость, м/с

Что составляет 0.2 * 1.22 * 1.2 * 767 = 224 Н при 100 км/час

Для пробега в 100 км потребуется 224 * 100.000 = 22.400.000 Дж, что  составляет мощность в 6.2 кВт. (8,4 л.с) при 100 км/час или 3,2 кВт при скорости 72 км/час или 833 Вт при 36 км/час

КПД двигателя. Желательно отказаться от двигателя внутреннего сгорания с КПД 18-20% и применять электродвигатель (КПД 90%).

Рекуперация энергии. Применение маховика для рекуперации (накопления) энергии торможения с последующей отдачей при разгоне.

Сопротивление дороги. Двухколесному монокару потребуется значительно меньше энергии на преодоление сопротивления дороги.

4000H * 0,02 = 80 H

Для пробега в 100 км потребуется 80 * 100.000 = 8.000.000 Дж, что  составляет мощность 2.2 кВт/час. (3 л.с.)

Рисунок 4.2. Конструкция монокара

Технические характеристики монокара:

Длина - 4000 мм.

Ширина - 1500 мм.

Высота - 1500 мм.

База - 3000 мм.

Клиренс - 350 мм.

Количество мест - 3 чел.

Количество дверей кузова - 2.

Грузоподъемность - 200-250 кг.

Привод -вероятно, полный.

Подвеска - зависимая.

Низкий расход топлива (не более 1л. на 100км.).

Пониженный уровень  выхлопов СО2 и CN.

Малый вес (не более 400 кг).

Простота и  надежность конструкции.

Простота в  управлении и обслуживании.

Высокая маневренность (радиус разворота около 4 м).

Низкий коэффициент  аэродинамического сопротивления.

Низкая стоимость

 

 

4. Беспилотные самолеты

 

"Беспилотники" различаются по массе (от аппаратов весом в полкилограмма, сравнимых с авиамоделью, до 10-15-тонных гигантов), высоте и продолжительности полета. Беспилотные летательные аппараты массой до 5 кг (класс "микро") могут взлетать с любой самой маленькой площадки и даже с руки, поднимаются на высоту 1-2 километра и находятся в воздухе не более часа. Как самолеты-разведчики их используют, например, для обнаружения в лесу или в горах военной техники и террористов. "Беспилотники" класса "микро" массой всего 300-500 граммов, образно говоря, могут заглянуть в окно, поэтому их удобно использовать в городских условиях.

За "микро" идут беспилотные летательные аппараты класса "мини" массой до 150 кг. Они  работают на высоте до 3-5 км, продолжительность  полета составляет 3-5 часов. Следующий  класс - "миди". Это более тяжелые  многоцелевые аппараты массой от 200 до 1000 кг. Высота полета достигает 5-6 км, продолжительность - 10-20 часов.

И, наконец, "макси" - аппараты массой от 1000 кг до 8-10 т. Их потолок - 20 км, продолжительность полета - более 24 часов. Вероятно, вскоре появятся машины класса "супермакси". Можно предположить, что их вес превысит 15 тонн. Такие "тяжеловозы" будут нести на борту огромное количество аппаратуры различного назначения и смогут выполнять самый широкий круг задач.

Если вспомнить  историю беспилотных летательных  аппаратов, то впервые они появились  в середине 1930-х годов. Это были дистанционно управляемые воздушные  мишени, используемые на учебных стрельбах. После Второй мировой войны, точнее, уже в 1950-х годах, авиаконструкторы создали беспилотные самолеты-разведчики. Еще 20 лет понадобилось на то, чтобы разработать машины ударного назначения. В 1970-х - 1980-х годах этой тематикой занимались конструкторские бюро П. О. Сухого, А. Н. Туполева, В. М. Мясищева, А. С. Яковлева, Н. И. Камова. Из туполевского КБ вышли беспилотные разведчики "Ястреб", "Стриж" и находящийся на вооружении и сегодня - "Рейс", а также ударный "Коршун, созданный совместно с НИИ "Кулон". Достаточно успешно занималось беспилотными самолетами КБ Яковлева, где разрабатывались аппараты "мини"-класса. Наиболее удачным из них стал комплекс "Пчела", который до сих пор стоит на вооружении.

В 1970-х годах в СССР были развернуты научно-исследовательские работы по созданию беспилотных самолетов с большой высотой и продолжительностью полета. Ими занималось ОКБ В. М. Мясищева, где разрабатывали машину "макси"-класса "Орел". Тогда дело дошло только до макета, но почти через 10 лет работы возобновили. Предполагалось, что модернизированный аппарат сможет летать на высоте до 20 км и находиться в воздухе 24 часа. Но тут наступил реформенный кризис, и в начале 1990-х годов программу "Орел" из-за отсутствия финансирования закрыли. Примерно в то же время и по тем же причинам были свернуты работы над беспилотным летательным аппаратом "Ромб". Этот уникальный по своей конструкции самолет, созданный совместно с "НИИ ДАР" при участии разработчика радиолокационной системы "Резонанс" Главного конструктора Э. И. Шустова, представлял собой разрезной биплан из четырех крыльев, составленных в виде ромба, в которые монтировались крупногабаритные антенны, обслуживающие радиолокационную станцию. Масса его была порядка 12 тонн, а полезная нагрузка достигала 1,5 тонны.

После первой волны  разработок "беспилотников" в 1970-х - 1980-х годах наступило длительное затишье. Армию оснащали дорогостоящими пилотируемыми самолетами. Под них выделяли большие средства. Этим и определялся выбор тематики разработок. Правда, все эти годы "беспилотниками" активно занималось Казанское опытно-конструкторское бюро "Сокол".

Сегодня беспилотные  летательные аппараты "мини"- и "миди"-класса представлены достаточно широко. Их производство под силу многим странам, поскольку с этой задачей могут справиться небольшие лаборатории или институты. Что же касается аппаратов класса "макси", то для их создания нужны ресурсы целого авиастроительного комплекса.

В чем же преимущества беспилотных летательных аппаратов? Во-первых, они в среднем на порядок  дешевле пилотируемых самолетов, которые  нужно оснащать системами жизнеобеспечения, защиты, кондиционирования… Во-вторых, легкие (по сравнению с пилотируемыми самолетами) беспилотные летательные аппараты потребляют меньше топлива. В-третьих, в отличие от пилотируемых самолетов, машинам без пилота не нужны аэродромы с бетонным покрытием.

Основной критерий выбора типа летательных аппаратов - стоимость. Благодаря стремительному развитию вычислительной техники существенно  подешевела "начинка" - бортовые компьютеры "беспилотников".

Беспилотные самолеты класса "макси" и "супермакси" сегодня востребованы как никогда. Судя по всему, они могут изменить расклад сил на мировом рынке летательных аппаратов. Пока эта ниша освоена только американскими конструкторами, которые начали работать над "беспилотниками" "макси"-класса на 10 лет раньше нас и успели создать несколько очень хороших самолетов. Наиболее популярный из них "Глобал Хоук" (рис.5.1): он поднимается на высоту до 20 км, весит 11,5 тонны, имеет продолжительность крейсерского полета более 24 часов. Конструкторы этой машины отказались от поршневых моторов и оснастили ее двумя турбореактивными двигателями. Именно после показа "Глобал Хоука" на авиасалоне в    Ле-Бурже в 2001 году на Западе началась борьба за захват нового сектора рынка.

Информация о работе Новые виды транспорта