Автор работы: Пользователь скрыл имя, 10 Апреля 2014 в 16:29, курсовая работа
Долбежный станок предназначен для долбления пазов и внутренних канавок в отверстиях. Для движения ползуна с резцом используется шестизвенный кривошипно-кулисный механизм OALBCDEP с качающейся кулисой. Кривошип 2 получает вращательное движение от электродвигателя через клинно-ременную передачу и горизонтальный одноступенчатый редуктор с цилиндрическими колесами. Вращательное движение кривошипа преобразуется в возвратно-поступательное движение ползуна 6 через качающуюся вокруг опоры С кулису 4 с камнем 3 и шатун 5.
где Ag – полезная работа механизма,
Средняя мощность движущих сил:
Требуемая мощность электродвигателя: ,
где
КПД зубчатой передачи, - цилиндрическая передача
- КПД ременной передачи,
- КПД одной пары подшипников качения,
количество пар подшипников качения
По ГОСТ 19523–81 выбираем , причем , согласно выбираем синхронную частоту вращения , процент скольжения S. Соответственно выбрали:
=0,55 кВт, =1500 об/мин, S=7,3%
Определяем номинальное число оборотов электродвигателя:
Определяем передаточное число, общее:
где - передаточное число редуктора, выбираем по ГОСТ 2185–66
Up – передаточное число ременной передачи
радиус делительной окружности шестерни
Построение диаграммы изменения кинетической энергии
Имея диаграмму сил сопротивления графически проинтегрируем ее методом хорд и получим график работы сил сопротивления . Масштаб графика получим вычисляя по формуле:
,
где масштаб
масштаб оси
Н – полюсное расстояние при графическом интегрировании, мм
Приведенный момент движения сил для промышленных установок принимаем постоянным в течение всего цикла установившегося режима. Учитывая то обстоятельство, что за полный цикл установившегося движения работа движущих сил равна работе сил сопротивления. Соединяем 1-ую и последнюю точки в диаграмме прямой линией. Указанная прямая в положительной области представляет собой диаграмму работ движущих сил . Вычитая из ординат диаграммы соответствующие ординаты диаграммы и откладывая разность на соответствующей ординате получаем диаграмму изменения (приращения) кинетической энергии механизма
Определение истинной скорости движения звена приведения
Построение диаграммы приведенного момента инерции по уровню:
Определяем значения приведенного момента инерции в каждом положении:
Результат заносим в таблицу.
Таблица 4 – Значения приведенных моментов инерции
Положение |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
0,15 |
0,25 |
0,43 |
0,52 |
0,39 |
0,3 |
0,15 |
0,32 |
0,86 |
По полученным значениям строим график изменения приведенного момента инерции от функции угла поворота звена приведения .
Масштаб
Построение диаграммы «Энергия – масса» (кривой Виттенбауэра) и зависимости
Исключив из графиков и аргумент φ получим функциональную зависимость изменения приращения к кинетической энергии от приведенного момента инерции - диаграмму Виттенбауэра.
Кинетическая энергия механизма в любой момент времени можно представить в виде суммы кинетической энергии механизма в начальный момент времени и разности работ сил движущих Ag и сил сопротивления Aс за время соответствующее повороту звена приведения на угол φ, т.е.
Переносим начало координат графика на расстояние соответствующее значению кинетической энергии .
В этом случае диаграмма Виттенбауэра отнесенная к новой системе координат, представляет кривую изменения кинетической энергии всего механизма функции приведенного момента инерции
Истинная скорость звена приведения в данном его положении:
(1)
Взяв на кривой произвольно выбрав точку с координатами (х, у) и определив значение:
После подстановки в формулу (1) получим:
(2)
Полученные данные заносим в таблицу.
Таблица 5-Значения истинной скорости движения звена приведения
Положение |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
По значениям таблицы строим диаграмму изменения истинной скорости движения звена приведения .
Из нового начала координат т. О1 касательно к диаграмме проводим
Лучи и находим лучи , тогда по формуле (2) находим , . Угловые
Скорости звена приведения:
Информация о работе Динамический анализ механизмов долбежного станка