Автор работы: Пользователь скрыл имя, 08 Февраля 2014 в 10:39, реферат
В процессе движения поезда на него действуют силы, различные по своему характеру и направлению. Различают силы внешние (например, сила сопротивления движению от уклона) и внутренние ( например, сила трения в моторно-осевых подшипниках). Внешние силы можно разделить на управляемые ( сила тяги) и неуправляемые (силы сопротивления движению). В зависимости от соотношения управляемых и неуправляемых сил, поезд может двигаться ускоренно, замедленно или с равномерной скоростью.
Условные обозначения 3
Общие сведения о тормозах 4
Классификация тормозов 13
Классификация приборов тормозного оборудования 15
Пневматическая схема электровоза ВЛ80 17
Компрессор КТ6-Эл 20
Регулятор давления АК-11Б 29
Кран вспомогательного локомотивного тормоза усл.№ 254 31
Кран машиниста усл.№ 394 38
Блокировка тормозов усл.№ 367 57
Реле давления усл.№ 304-002 62
Редуктор усл.№ 348 65
Воздухораспределитель усл.№ 292-001 67
Воздухораспределитель усл.№ 483-000 77
Сигнализатор обрыва тормозной магистрали с датчиком усл.№418 95
Клапаны обратный, предохранительный, переключательный 98
Электро-блокировочный клапан КЭП-99-02 102
Манометры 104
Автоматический регулятор режимов торможения усл.№ 265-000 105
Электропневматические тормоза 108
Электропневматический клапан автостопа ЭПК-150 118
Тормозные цилиндры 120
Воздушные резервуары 123
Тормозная рычажная передача 124
Используемая литература
Оглавление
Условные обозначения 3
Общие сведения о тормозах 4
Классификация тормозов 13
Классификация приборов тормозного оборудования 15
Пневматическая схема
Компрессор КТ6-Эл 20
Регулятор давления АК-11Б 29
Кран вспомогательного локомотивного тормоза усл.№ 254 31
Кран машиниста усл.№ 394 38
Блокировка тормозов усл.№ 367 57
Реле давления усл.№ 304-002 62
Редуктор усл.№ 348 65
Воздухораспределитель усл.№ 292-001 67
Воздухораспределитель усл.№ 483-000 77
Сигнализатор обрыва тормозной магистрали с датчиком усл.№418 95
Клапаны обратный, предохранительный, переключательный 98
Электро-блокировочный клапан КЭП-99-02 102
Манометры 104
Автоматический регулятор режимов торможения усл.№ 265-000 105
Электропневматические тормоза 108
Электропневматический клапан автостопа ЭПК-150 118
Тормозные цилиндры 120
Воздушные резервуары 123
Тормозная рычажная передача 124
Используемая литература 130
Условные обозначения.
ВР - воздухораспределитель;
ГР - главный резервуар;
ЗР - запасный резервуар;
КМ – кран машиниста № 394 (395);
КВТ – кран машиниста № 254;
МК – магистральная камера воздухораспределителя;
ПМ – питательная магистраль;
РК – рабочая камера воздухораспределителя;
РД – регулятор давления;
ТМ – тормозная магистраль;
ТЦ – тормозной цилиндр;
УР – уравнительный
резервуар;
УП – уравнительный поршень;
ЭВР – электро-
ЭПТ – электропневматический тормоз;
Единицы измерения давления;
0,1 МПа – 1 кгс/см2 – примерно 1 ат.
1. Общие сведения о тормозах. Основы теории торможения.
1.1 Уравнение движения поезда.
В процессе движения поезда на него действуют силы, различные по своему характеру и направлению. Различают силы внешние (например, сила сопротивления движению от уклона) и внутренние ( например, сила трения в моторно-осевых подшипниках). Внешние силы можно разделить на управляемые ( сила тяги) и неуправляемые (силы сопротивления движению). В зависимости от соотношения управляемых и неуправляемых сил, поезд может двигаться ускоренно, замедленно или с равномерной скоростью.
Сила тяги – внешняя движущая сила, которая создается тяговыми электродвигателями локомотива во взаимодействии с рельсами. Она приложена к ободу колес в направлении движения. Для остановки поезда необходимо исключить действие силы тяги, т.е. отключить тяговые двигатели. Однако поезд продолжит движение по инерции за счет накопленной кинетической энергии и до полной остановки пройдет значительное расстояние. Чтобы обеспечить остановку поезда в требуемом месте или снижение скорости движения на определенном участке следования, необходимо искусственно увеличить силы сопротивления движению.
Устройства, применяемые в поездах для создания искусственного сопротивления движению, называются тормозами, а силы, создающие искусственное сопротивление движению, - тормозными силами.
Тормозные силы и силы сопротивления движению гасят кинетическую энергию движущегося поезда.
Представим поезд в виде точки М и силы, которые на него действуют.
, где М – поезд;
Fк – сила тяги локомотива;
W – силы сопротивления движению поезда;
Вт – тормозная сила.
Если поезд следует в режиме тяги, то на него действуют две силы. Это сила тяги локомотива Fк, которая придает поезду положительное ускорение и сила сопротивления движению, которая придает поезду отрицательное ускорение ( Fк – W ). При отключении силы тяги на поезд будет действовать только сила сопротивления движению поезда (W). При торможении на поезд действуют также две силы. Первая – это сила сопротивления движению поезда и вторая тормозная сила (-W – Вт). Тогда уравнение движения поезда запишется следующим образом:
Fу= Fк – W – Вт ;
1.2 Схема разложения скоростей на движущемся колесе.
Для торможения подвижного состава к нему должны быть приложены внешние силы от неподвижных рельсов. Действие этих сил должно быть направлено против направления движения поезда. Рассмотрим кинематику катящейся колесной пары. Она совершает сложное движение, состоящее из двух простых (рис. 1.1): прямолинейное движение вдоль пути вместе со всем поездом со скоростью V км/ч и вращательного w вокруг собственной оси О. Вращательное движение обусловлено сцеплением колес с рельсами в точках их контактов О1 . Это сцепление происходит под действием вертикальной нагрузки q. Окружная скорость вращения колеса на поверхности качения равна поступательной скорости поезда, т.е. V км/ч. В точке колеса О2, находящейся в данное мгновение в самом верхнем положении, поступательное и вращательное движения направлены в одну и ту же сторону - вперед (по ходу движения поезда), поэтому скорости поступательного и вращательного движения складываются, и мгновенная абсолютная скорость колеса в этой точке оказывается V + V = 2V, т. е. вдвое больше скорости поезда. Нижняя точка О1, находящаяся в сцеплении с рельсом, в каждый момент времени качения колеса оказывается неподвижной (- V + V = 0). В течение этого мгновения колесо как бы поворачивается вокруг точки сцепления О1, которая в механике называется «мгновенный центр поворота». Таким образом, колесо в точке его сцепления с рельсом катится по нему вперед и с такой же скоростью вращается обратно. Это означает, что в точке О1 сила трения отсутствует, а действует только сила сцепления, которая образуется за счет взаимодействия микроскопических неровностей на поверхностях колеса и рельса, а также за счет сил молекулярного притяжения, возникающих под действием нагрузки q, значение которой достигает 15 кгс/см2.
1.3 Образование тормозной силы
Теперь рассмотрим силовые процессы, происходящие после прижатия колодки к катящемуся колесу (рис 1.2). Нажатие на вращающееся колесо колодки с силой К вызывает появление силы трения Т между колодкой и колесом, которая действует от колодки на колесо против его вращения, т. е. стремится остановить это вращение. Тормозить поступательное движение поезда сила трения Т не может, так как это внутренняя сила по отношению к поезду - колодка является частью самого поезда и движется вместе с ним. Однако под действием внутренней силы Т колесо начинает «цепляться» за рельс в точке контакта О1. Возникает сила сцепления колеса с рельсом В, равная по величине силе Т. Сила В стремится утащить рельс за собой (сдвинуть его по ходу движения поезда). Так как рельс прикреплен к шпалам, то он остается неподвижным (в путевом хозяйстве хорошо известно явление угона рельсов под действием сил сцепления В). Особенно интенсивно угон рельсов происходит в местах, где обычно производится служебное торможение поездов. В свою очередь, неподвижный рельс тормозит катящееся по нему колесо с силой Вт, являющейся реакцией рельса на силу В. Сила Вт является внешней силой по отношению к поезду и направлена против направления его движения, поэтому она является тормозной силой. Тормозная сила выполняет еще одну важную функцию: являясь реакцией рельса на силу Т и направленная по направлению вращения катящегося колеса, она уравновешивает эту силу трения Т, заставляя колесо продолжать вращение, препятствуя переходу колесной пары на юз. Итак, колодки прижимаются к колесам для того, чтобы возникшая сила трения Т вызывала появление равной ей внешней силы Вт, которая, будучи направленной по вращению колеса, препятствует переходу его на юз и в то же время, имея направление против движения поезда, тормозит его.
Чтобы облегчить представление этой картины, достаточно мысленно приподнять тормозимые колесные пары над рельсами, и тогда станет ясно, что колесные пары, потеряв сцепление с рельсами, под действием сил трения Т сразу прекратят вращение, но сам поезд будет продолжать движение вперед. Точно так же торможение самолетов колесами их шасси возможно только после приземления на посадочную полосу.
Развитие тормозной силы в поезде при полном служебном или экстренном торможении характеризуется четырьмя фазами в соответствии диаграммой наполнения ТЦ сжатым воздухом в функции времени по длине поезда.
Фаза 1. при торможении с локомотива происходит последовательное срабатывание тормозов в поезде. К моменту начала действия тормоза хвостового вагона завершается первая фаза с образованием максимального усилия сжатия поезда.
Фаза 2. при одинаковой диаграмме наполнения давление в ТЦ равномерно возрастает с той разницей, которая успела образоваться к началу второй фазы.
Фаза 3. давление в ТЦ от первого до последнего вагона начинает выравниваться, достигая максимальной величины и в конце фазы становиться одинаковым во всем поезде. Если в начале этой фазы поезд был еще сжат вследствие разницы давления в ТЦ, то в конце ее он приходит в свободное состояние вследствие постепенного и полного выравнивание давления. В этой фазе происходит последовательная «отдача» поглощающих аппаратов.
Фаза 4. В этой фазе на каждом вагоне действует максимальная тормозная сила. При равномерном распределении по длине поезда удельной тормозной силы реакции в упряжных устройствах отсутствуют. В случае неравномерного распределения в поезде возникают реакции сжатия или растяжения.
Наиболее неблагоприятные
условия создаются при
Сила трения Т между колодкой и колесом оказывается в несколько раз меньше силы К нажатия колодки на колесо. Отношение силы Т/К называется коэффициентом трения и обозначается φк. Коэффициент рассчитывается по эмпирическим формулам.
Основными факторами влияющими на значение коэффициента трения являются: скорость движения, удельная сила нажатия тормозной колодки на колесо, а также материал тормозной колодки. С уменьшением скорости коэффициент трения увеличивается особенно при применении чугунных колодок. С увеличением силы К коэффициент трения снижается. Это видно на рис.1.3.
1.4 Условия безъюзового торможения.
Явление, когда колесо прекращает свое вращение и начинает скользить по рельсу при продолжающемся движении поезда, называется заклиниванием или юзом.
Качение колеса по рельсу без проскальзывания происходит за счет силы сцепления Вс , действующей со стороны рельса на колесо в точке их контакта.
Вс = q * Ψк
где: q - осевая нагрузка; Ψк - коэффициент сцепления между колесом и рельсом.
Сцепление колес с рельсами представляет сложный процесс, при котором происходит преодоление механического зацепления микронеровностей поверхностей колеса и рельса и их молекулярного притяжения. Коэффициент сцепления зависит в основном от осевой нагрузки. состояния поверхностей колеса и рельса, скорости движения, площади контакта, типа тягового привода и может изменяться в широких пределах (0.04 - 0.30).
Наиболее неблагоприятное сцепление имеет место при моросящем дожде, образовании на рельсах инея или при загрязнении рельсов перевозимыми нефтепродуктами, смазкой, торфяной пылью. Простым и эффективным способом повышения коэффициента сцепления является подача песка под колесные пары.
Как правило, заклинивание колесной пары не происходит мгновенно. Предварительно колесная пара начинает проскальзывать, скорость ее становится меньше поступательной скорости подвижного состава. Это приводит к увеличению тормозной силы Вт за счет повышения коэффициента трения φк . В точке к контакта колеса с рельсом кинетическая энергия превращается в тепловую, что может привести к сдвигу металла на поверхности катания колеса при проскальзывании (образование навара)
или образованию
овальной площадки (ползуна) при
скольжении. Поэтому максимальная
величина тормозной силы
силу сцепления колеса с рельсом. Для этого должно выполняться правило:
Вт max ≤ Вс или φк * К = Ψк * q
где: φк - коэффициент трения; К - сила нажатия колодок на ось; Ψк - коэффициент сцепления колеса с рельсом; q - осевая нагрузка. Максимальная сила нажатия тормозной колодки на колесо
К = Ψк / φк*q
1.5 Способы
регулирования величины
Важной характеристикой тормоза является
его способность максимально использовать
коэффициент сцепления колес с рельсами.
Неполное использование сцепления имеет
место в процессе наполнения тормозных
цилиндров, то есть когда тормозная сила
еще не достигла максимальной величины.
Поэтому при допустимых условиях по величинам
продольных динамических усилий в поезде
и заклиниванию колесных пар стремятся
к минимальному времени наполнения тормозных
цилиндров. Коэффициент сцепления уменьшается
с ростом скорости движения, что вызывает
необходимость изменения тормозной силы
(в первую очередь для подвижного состава,
оборудованного чугунными тормозными
колодками). Для грузовых тормозов большое
значение в использовании сцепления имеет
соответствие между величиной тормозной
силы и весом вагона, поскольку сила сцепления
зависит от нагрузки от колесной пары
на рельс. Поэтому с целью исключения заклинивания
колесных пар применяется весовое и скоростное
регулирование величины тормозной силы.
Весовое регулирование.
Соответствие между величиной
тормозной силы и весом вагона
в тормозах грузового типа достигается ручным переключением
режимов торможения или применением на
грузовых вагонах авторежимов, которые
автоматически регулируют давление в
тормозном цилиндре в зависимости от загрузки
вагона. Воздухораспределитель грузового
типа имеет три режима торможения: порожний,
средний и груженный. Переключение режимов
выполняется вручную в зависимости от
загрузки вагона, приходящейся на ось.
Каждому режиму торможения соответствует
определенное давление в тормозном цилиндре.
Автоматический регулятор режимов торможения
(авторежим) позволяет избежать ошибки
при установке требуемого режима торможения.
Корпус авторежима крепится к подрессоренной
хребтовой балке вагона, а упор соприкасается
с плитой, укрепленной на необрессоренной
части тележки. По мере загрузки вагона
расстояние между корпусом авторежима
и опорной плитой уменьшается вследствие
прогиба рессор вагона. Колебания кузова
вагона не сказываются на давлении в тормозном
цилиндре, так как демпфирующие пружины
и дроссельное отверстие гасят колебания
подвижной части авторежима. Загрузку
вагона можно оценить по положению клина
амортизатора относительно фрикционной
планки рессорного подвешивания вагона.
Вагон считается порожним, если верхняя
плоскость клина амортизатора находится
выше фрикционной планки.
Скоростное регулирование тормозной силы.
Изменение тормозной силы при уменьшении
коэффициента сцепления при высоких скоростях
движения сводится к увеличению нажатия
на колодку за счет повышения давления
в тормозном цилиндре. (Рис.1.5).