Автор работы: Пользователь скрыл имя, 16 Февраля 2015 в 19:35, доклад
Производство перегнанного спирта моложе, чем неперегнанных спиртных напитков, но и его корни теряются в веках. Для получения напитка, содержащего 40% (по объему) спирта, нужна перегонка. Ее и сегодня осуществляют в перегонных аппаратах, представляющих собой модификации устройства, предложенного в 1830 г. Коффи и носящего его имя. Различия в сортах спиртовых продуктов зависят в основном от природы сырья, а также от того, подвергался ли конечный продукт выдержке.
3. Фруктозо-6-фосфат
под действием фермента
4. Под действием фермента альдолазы (активируемой ионами Zn2+, Со2+ и Са2+) фруктозе-1,6-дифосфат распадается на две фосфотриозы — З-фосфоглицериновый альдегид и фосфодиоксиацетон. Эта реакция обратима.
5. Между фосфотриозами происходит реакция изомеризации, катализируемая ферментом триозофосфатизомеразой. Равновесие устанавливается при 95% 3-фосфоглицеринового альдегида и 5% фосфодиоксиацетона.
6. В индукционный период,
пока в качестве
При установившемся процессе
окисление 3-фосфоглицеринового альдегида
в 3-фосфоглицериновую кислоту происходит
сложным путем. Вначале он превращается
в 1,3-дифосфоглицериновый альдегид, присоединяя
остаток неорганической фосфорной кислоты,
затем под действием фермента триозофосфатдегидрогеназы
в присутствии НАД (
7. При участии фермента фосфотрансферазы остаток фосфорной кислоты, содержащий макроэргическую связь, передается с 1,3-дифосфоглицериновой кислоты на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты. Энергия, освобождающаяся при окислении фосфоглицеринового альдегида, резервируется в АТФ.
8. Под действием фермента фосфоглицеромутазы 3-фосфоглицериновая кислота изомеризуется в 2-фосфоглицериновую кислоту.
9. В результате
отдачи воды, вызываемой перераспределением
внутримолекулярной энергии, 2-фосфоглицериновая
кислота превращается в
Максимальное действие энолазы проявляется в интервале рН 5,2—5,5. При рН 4,2 молекулы энолазы агрегируются, при рН 3—4 необратимо денатурируются.
10. Под действием фермента фосфотрансферазы в присутствии ионов К+ остаток фосфорной кислоты передается от фосфоэнолпировиноградной кислоты на АДФ, резервируя энергию в АТФ.
11. Образовавшаяся
12. Под действием фермента
карбоксилазы от
13. Фермент алкогольдегидрогеназа переносит водород с восстановленного НАД-Н2 на уксусный альдегид, в результате чего образуется этиловый спирт и регенерируется НАД.
В условиях аэробиоза распад углеводов до образования пировиноградной кислоты происходит так же, как и при анаэробиозе, но в отличие от него пировиноградная кислота полностью окисляется до диоксида углерода и воды в цикле трикарбоновых кислот — ЦТК (цикле Кребса, лимоннокислотном цикле). В этом цикле последовательно протекают окислительно-восстановительные реакции, в которых под действием специфических дегидрогеназ происходит перенос водорода на молекулярный кислород — конечный его акцептор. Однако перенос осуществляется не непосредственно, а через молекулы-переносчики, образующие так называемую дыхательную цепь. Схема химических превращений при аэробном распаде глюкозы приведена ниже.
При катаболизме глюкозы образуются две молекулы пировиноградной кислоты. Вначале одна из них подвергается реакциям окислительного декарбоксилирования, в результате которых образуется ацетил-КоА (активированная уксусная кислота):
СНз · СО · СООН + КоАSН + НАД — СНз-СО ~ КоАSН + НАД · Н2 + СО2
Вторая молекула пировиноградной кислоты под действием фермента пируваткарбоксилазы конденсируется с молекулой диоксида углерода с образованием щавелевоуксусной кислоты:
СHз · CO · COOH + CO2 + АТФ ↔ HOOC · CH2
При установившемся цикле щавелевоуксусная кислота образуется из яблочной (малата).
Собственно ЦТК начинается с конденсации ацетил-КоА с молекулой щавелевоуксусной кислоты (оксалоацетата), катализируемой ферментом цитратсинтазой. Продуктами реакции являются лимонная кислота (цитрат) и свободный кофермент А:
Дальнейшие превращения видны из схемы на рисунке.
За один оборот молекулы пировиноградной кислоты присоединяется 3 молекулы Н2О, выделяется 5 Н2 и образуется 3 молекулы СО2:
СНз · СО · СООН + ЗН2О — >
В ЦТК «сжигаются» не только углеводы, но и жирные кислоты (после предварительной деградации до ацетил-КоА), а также многие аминокислоты (после удаления аминогруппы в реакциях дезаминирования или переаминирования).
Аэробный и анаэробный распад углеводов доставляет дрожжам энергию и обеспечивает процессы синтеза биомассы различнымипредшественниками. Из щавелевоуксусной и а-кетоглутаровой кислот в результате восстановительного аминирования и переаминирования образуются соответственно аспарагиновая и глютаминовая кислоты. Аспарагиновая кислота может образовываться также из фумаровой кислоты. Синтез этих двух аминокислот занимает главное место в синтезе белков из углеводов. При конденсации фосфодиоксиацетона с альдегидами могут образовываться пентозы, гексозы и различные полисахариды. Для синтеза биомассы дрожжи используют и другие — анаплеротические — пути, например пентозофосфатный путь. Пентозофосфаты являются предшественниками нуклеотидов и нуклеиновых кислот.
Так как при полном окислении сахара значительно больше освобождается энергии и образуется реакционноспособных метаболитов для синтетических процессов, то возрастает скорость размножения и увеличивается биомасса дрожжей.
РАСХОД САХАРА НА БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ И ПРОДУКТЫ БРОЖЕНИЯ
Анализ различных способов получения дрожжей из мелассы показывает, что наибольший экономический коэффициент — процент сахара, израсходованного на получение товарной продукции, за вычетом потерь — получается при спиртовом брожении с утилизацией дрожжей (64,6%). На специализированных дрожжевых заводах экономический коэффициент ниже (42—45%).
В процессе дрожжегенерирования сахар расходуется на получение трех основных продуктов: дрожжей, спирта и диоксида углерода. Чтобы максимально использовать сахар, необходимо утилизировать все названные продукты. При спиртовом брожении сахар, например, содержащийся в мелассе, расходуется на образование следующих веществ: этилового спирта (46—47,6%); диоксида углерода [в соответствии с количеством этилового спирта (44 — 45,5%)]; биомассы дрожжей (1,8—4%); глицерина (3,2—4,5%); высших спиртов (0,28—0,7%); альдегидов (0,1—0,2%); органических кислот (0,2—1%). Потери несброженного сахара в бражке 2,1—2,8%. Общие потери сахара в процессе сбраживания 7—12% к введенному в производство. Соответственно и выход спирта составляет 88—93% к теоретическому.
Расход сахара на образование биомассы дрожжей и их жизнедеятельность зависит от направленности процесса. Так, при работе по схеме с выделением дрожжей из зрелой мелассной бражки и использованием их в качестве хлебопекарных стремятся накопить возможно больше дрожжей. Дрожжи можно многократно возвращать на сбраживание, что сокращает расход сахара на образование биомассы дрожжей. Энергия брожения дрожжей при их 2— 4-кратном возврате не только не снижается, но даже несколько повышается. Кроме того, при многократном использовании увеличивается общее число дрожжевых клеток и возрастает интенсивность брожения.
Коэффициенты полезно использованного углерода при концентрации сахара в среде 2,2% и температурах 15, 20, 25, 30 и 36°С соответственно равны 71,6; 67,4; 60,7; 58,5 и 62,7%.
С повышением интенсивности окислительных процессов (с увеличением интенсивности аэрации) выход дрожжей по массе сахара, израсходованного в процессе биосинтеза, уменьшается.
МИКРООРГАНИЗМЫ — СПУТНИКИ ДРОЖЖЕЙ
При сбраживании сусла дрожжами необходимо предохранять их от посторонних микроорганизмов — бактерий и «диких» дрожжей, вносимых с сырьем, водой и воздухом. Попадая в дрожжевые и бродильные аппараты, они могут накапливаться в значительных количествах и даже вытеснить производственную культуру дрожжей. Инфицирующие микроорганизмы потребляют из сусла часть питательных веществ, что снижает выход спирта. Кроме того, они образуют органические кислоты и другие продукты, инактивирующие ферменты осахаривающих материалов и снижающие бродильную энергию дрожжей, в результате чего в зрелой бражке повышается количество несброженных Сахаров и крахмала. Хлебопекарные дрожжи, выделенные из инфицированной мелассно-спиртовой бражки, имеют низкую ферментативную активность и стойкость-
Молочнокислые бактерии бывают цилиндрические или палочковидные и сферические или шаровидные (кокки), грамположительные, неподвижные, неспорообразующие. Гетероферментативные молочнокислые бактерии наряду с молочной кислотой образуют летучие кислоты, спирт, диоксид углерода и водород.
Оптимальная температура для роста большинства молочнокислых бактерий 20—30°С. Термофильные виды их лучше развиваются при 49—51°С. Молочнокислые, как и другие бесспоровые, бактерии погибают при 70—75°С.
Наиболее часто встречаются следующие виды молочнокислых бактерий: Lacto. bacillius plantarum, Lact. breve, Lact. fermentii, Leuconostoc mesenterioides, leuc. agglutinans. Первые три — палочки различной длины, последние два — очень короткие палочки, чаще дипло- и стрептококки. Бактерии Leuconostoc mesenterioides имеют слизистую капсулу, поэтому очень устойчивы к высокой температуре и кислотам. В жидких средах погибают при 112—120°С в течение 20 мин; в 0,5%-ном: растворе серной кислоты жизнеспособны в течение 1 часа. Бактерии Leuc. agglutinans обладают способностью прилипать к дрожжам и склеивать (агглютинировать) отдельные их клетки.
Уксуснокислые бактерии — грамотрицательные, палочковидные, бесспоровые, строго аэробные организмы, развивающиеся в тех же условиях, что и дрожжи. Бактерии способны окислять этиловый спирт в уксусную кислоту, пропиловый спирт — в пропионовую кислоту, бутиловый спирт — в масляную кислоту. Некоторые виды бактерий способны окислять также глюкозу в глюконовую кислоту, ксилозу и арабинозу — в ксилоновую и арабановую кислоты. Этиловый спирт является главным источником жизнедеятельности уксуснокислых бактерий.