Показатели качества воды

Автор работы: Пользователь скрыл имя, 17 Апреля 2014 в 15:02, контрольная работа

Краткое описание

Вода - ценнейший природный ресурс. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Для удовлетворения разнообразных требований к качеству воды, потребляемой при выработке электрической и тепловой энергии, возникает необходимость специальной физико-химической обработки её.

Прикрепленные файлы: 1 файл

Моя водоподготовка.docx

— 362.87 Кб (Скачать документ)

 

 

Введение

 

        Вода - ценнейший природный ресурс. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Для удовлетворения разнообразных требований к качеству воды, потребляемой при выработке электрической и тепловой энергии, возникает необходимость специальной физико-химической обработки её. Качественная  водоподготовка, рациональный водно-химический режим – это:

1. Гарант надёжности, экономичности, безаварийности теплоэнергетического оборудования и тепловых сетей.

2. Обеспеченность предупреждения образования всех видов отложений и коррозионных повреждений на внутренних поверхностях теплоэнергетического оборудования, элементах трассы сетевой воды, включая отопительные приборы;

3. Экономия сжигаемого топлива, так как образующиеся отложения на поверхности нагрева обладают высоким термическим сопротивлением, что вызывает большие потери топлива.

4. Уменьшение сбрасываемых экологических загрязнителей от теплоэнергетических объектов в биосферу, отрицательно влияющих на здоровье населения (экологическая безопасность).

Одновременно с очисткой природной воды на электростанциях необходимо решать комплексно вопросы, связанные с утилизацией различными методами образующихся при этом сточных вод. Такое решение является мерой защиты от загрязнения природных источников питьевого и промышленного водоснабжения.

    Выбор метода  обработки воды, составление общей  схемы технологического процесса  при применении различных методов, определение требований, предъявляемых к качеству её, существенно зависят от состава исходных вод, типа электростанции, применяемого основного оборудования.

       На тепловых электростанциях применяются различные методы обработки воды, однако в основном их можно разделить на безреагентные, или физические методы и методы в которых используются различные препараты  (химические реагенты). Безреагентные (физические) методы  применяются как отдельные этапы в общем технологическом процессе обработки воды, и как самостоятельные методы, обеспечивающие получение воды требуемого качества. Применяя химическую обработку (включая также методы ионного обмена), можно получить как умягчённую, так и глубокообессоленную воду.

1.Выбор источника и производительности водоподготовки

 

     На ТЭС с производственными отборами наряду с внутренними потерями существуют потери пара и конденсата в технологических процессах у потребителей теплоты. Эти потери должны восполняться добавочной водой, подготавливаемой на ВПУ, по качеству сопоставляемой с качеством  питательной воды котлов.  ВПУ для подпитки тепловых сетей. Для приготовления добавочной и подпиточной вод на электростанциях применяют:

  • Воды поверхностных источников
  • Воды артезианских скважин
  • Воды прямоточных и циркуляционных систем охлаждения конденсаторов турбин;

     Так, если водоисточником является артезианская вода, в которой практически отсутствуют ГДП и органические вещества, то отпадает необходимость в предварительной ее коагуляции. Однако такая вода обычно содержит большое количество ионов двухвалентного железа, что приводит к  необходимости применять методы предварительного его удаления из воды перед последующей обработкой. Преимуществом артезианской воды перед поверхностной является ее стабильный состав во все времена года, что в значительной степени облегчает эксплуатацию водоподготовительной установки. При заборе воды из поверхностного источника следует учитывать, что качество воды в нем меняется не только по сезонам, но и по годам. Так, весной и осенью в такой воде возрастают

концентрации ГДП и органических веществ и уменьшается

солесодержание, в летние и зимние месяцы — наоборот. Эти обстоятельства следует учитывать при проектировании схемы обработки воды из поверхностных источников, так как водоподготовительная установка (ВПУ) рассчитывается применительно к максимальным концентрациям того или иного вещества в природной воде. В некоторых случаях при соответствующем технико-экономическом обосновании возможно использование в качестве исходной для ВПУ воды из прямоточных или оборотных систем водоснабжения, а также очищенных сточных вод ТЭС . Место забора воды следует располагать по возможности дальше от места сброса сточных вод соседних предприятий. Производительность ВПУ должна быть достаточной для покрытия потерь воды и пара в схеме ТЭС, а также для расхода воды и пара на различные технологические нужды

электростанции

2 Показатели качества воды

 

Качество воды характеризуется прозрачностью (содержанием взвешенных веществ), сухим остатком, жесткостью, щелочностью, окисляемостью.

Сухой   остаток   содержит   общее    количество растворенных  в  воде   веществ: кальция, магния, натрия, аммония, железа, алюминия и др., которые остаются после выпаривания воды и высушивания остатка при 110°С. Сухой остаток выражают  в  миллиграммах на килограмм или в микрограммах на килограмм.

Жесткость воды характеризуется суммарным содержанием в воде солей кальция и магния, являющихся накипеобразователями. Различают жесткость общую, временную (карбонатную) и постоянную (некарбонатную).

Общая жесткость представляет собой сумму величин временной и постоянной жесткости и характеризуется суммой содержания в воде кальциевых и магниевых солей: сернокислых (СаSО4 и МgSО4), хлористых (СаС12 и МgС12), азотнокислых (Са(NО3)2 и Мg(NО3)2), кремнекислых (СаSiO3 и МgSiO3), фосфорнокислых (Са3(РО4)2 и Мg(РО4)2), двууглекислых (Са(НСО3)2 и Мg(НСО3)2).

Временная жесткость характеризуется содержанием в воде бикарбонатов кальция и магния Са(НСО3)2 и Мg(НСО3)2. Постоянная жесткость обусловливается содержанием указанных выше солей кальция и магния, за исключением двууглекислых.

Для определения величины жесткости в настоящее время установлена единица показателя жесткости — миллиграмм-эквивалент на 1 кг раствора (мг-экв/кг) или микрограмм-эквивалент на 1 кг раствора (мкг-экв/кг); 1 мг-экв/кг жесткости соответствует содержанию 20,04 мг/кг иона кальция Са + или 12,16 мг/кг иона магния Мg2 +.

Щелочность воды характеризуется содержанием в ней щелочных соединений. Сюда относят гидраты, например NаОН — едкий натр, карбонаты Nа2СО3 — кальцинированная сода, бикарбонаты NаНСО3, Na3РО4 и др. Величина щелочности воды равна суммарной концентрации в ней гидроксильных, карбонатных, бикарбонатных, фосфатных и других анионов слабых кислот, выраженной в эквивалентных единицах (мг-экв/кг или мкг-экв/кг). В зависимости от преобладающего наличия в воде анионов тех или иных солей различают щелочность: гидратную (концентрация в воде гидроксильных анионов ОН), карбонатную (концентрация карбонатных анионов CO3²¯) и бикарбонатную (концентрация бикарбонатных анионов НСОз³¯.).

Окисляемость воды характеризуется наличием в воде кислорода и двуокиси углерода, выраженных в миллиграммах или микрограммах на килограмм.

В зависимости от характера использования воды различными потребителями определяются и показатели, необходимые для качественной и количественной характеристики воды.

Важнейшими показателями качества воды для использования ее в теплоэнергетике являются;

– концентрация грубодисперсных веществ (ГДП);

– концентрация истинно-растворимых примесей (ионный состав);

– концентрация коррозионно-активных газов;

– концентрация ионов водорода;

– технологические показатели, в которые входят сухой и прокаленный остаток, окисляемость, жесткость, щелочность, кремнесодержание, удельная электропроводность и т.д.

Рассмотрим воду реки Шексна г.Череповец со следующими показателями

ГДП мг/дм3 15

Содержание ионов:  Na++K+  = 9.2мг/дм3 ,=97.62мг/дм3, =2 мг/дм3

=0 мг/дм3, SiO2 +=6.9 мг/дм3

Сухой остаток 288 мг/дм3

Окисляемость ---0

Щёлочность 2мг-экв/дм3

Жёсткость Ж0=3,9мг-экв/дм3, ЖСа=2,7мг-экв/дм3

 

    Если очистка воды от тяжёлых ГДП может быть принципиально осуществлена обычным отслаиванием, время которого определяется размером и удельной массой частиц, то коллоидные примеси за счёт их особого свойства(агрегативной устойчивости) могут быть выделены из воды только методом коагуляции.

 

3 Методы очистки воды

 

      Разнообразие примесей, которые должны быть удалены из воды, а также методов, применяемых при ее обработке на котельных и ТЭС, усложняют поиск оптимальных решений при выборе схем и аппаратов в каждом конкретном случае.

Поэтому очевидна необходимость классификации методов очистки и удаляемых примесей. Наиболее известны классификации Л.А. Кульского и М.И. Лапшина. В основе классификации Л.А. Кульского лежит различие характера удаляемых примесей. Загрязненные воды представляют собой гомогенные или гетерогенные системы, которые соответственно подразделяются на ионные, молекулярные, коллоидные растворы и взвеси. К каждой из четырех групп вод (систем) подобраны соответствующие наиболее эффективные методы очистки воды, области их применения, состав очистных сооружений и т.д. Однако в этой классификации не учитывается характер отдельных примесей.

В классификации М.И. Лапшина, наоборот, основным классификационным признаком является характер и состояние удаляемых при очистке примесей; при этом методы очистки подразделяются на следующие группы:

  • методы непосредственного выделения примесей, например отстаивание;

  • методы выделения примесей с изменением фазового состояния воды или примеси, например деаэрация;

  • методы превращения примесей, например образование труднорастворимых соединений (известкование);

  • биохимические методы.

Обе классификации имеют достоинства и недостатки, но дополняя друг друга, помогают выбору оптимального решения схем ВПУ на котельных и ТЭС с точки зрения как повышения эффективности очистки воды, так и возможности утилизации извлеченных из нее при очистке примесей для предотвращения загрязнений окружающей среды. Многообразие примесей в природной воде служит причиной того, что очистка добавочной воды для подпитки котлов организуется в несколько стадий на ВПУ.

На начальном этапе из воды выделяются  грубодисперсные и коллоидные вещества, а также снижается бикарбонатная щелочность этой воды. На дальнейших этапах производится очистка воды от истинно-растворимых примесей.

Начальный этап очистки воды.

3.1 Предочистка

 

 Необходима для улучшения технико-экономических показателей последующих этапов очистки воды, а также потому, что при отсутствии предочистки применение многих методов на последующих ступенях очистки встречает значительные затруднения. Так, наличие в воде органических веществ приводит к изменению технологических свойств анионитов, способствует их старению, а следовательно, к резкому (в 4–8 раз) снижению срока службы. Присутствие в воде ионов железа в концентрации свыше 50 мкг/дм3 вызывает отравление мембран при очистке воды электролизом. Неудовлетворительная очистка воды от грубодисперсных и коллоидных примесей является одной из причин образования накипей на поверхностях нагрева и ухудшению качества пара. Поэтому в настоящее время предочистке  воды в схемах подготовки добавочной и подпиточной воды придается важное значение.

Предочистка-воды может быть осуществлена в основном методами осаждения, при применении которых примеси выделяются из воды в виде осадка.  Эти методы называются также реагентными, так как для выделения примесей в воду дозируются специальные реагенты. К процессам осаждения, применяемым в настоящее время при предочистке воды, относятся;         коагуляция, известкование, магнезиальное обескремнивание. Как правило, эти процессы совмещаются и проводятся одновременно в одном аппарате – осветлителе, что целесообразно как для улучшения суммарного технологического эффекта процесса очистки воды, так и для снижения капитальных и эксплуатационных затрат.

Первичное осветление воды производится в осветлителях, а окончательно очистка от осадка осуществляется при помощи процесса фильтрования, который также относится к предочистке воды, но является безреагентным методом.

 

3.2 Коагуляция коллоидных примесей воды

 

        Коагуляция – это физико-химический процесс слипания коллоидных частиц под действием сил молекулярного притяжения с образованием грубодисперстной  макрофазы(флоккул) и с последующим выделением её из воды. В практике водоподготовки под коагуляцией понимают очистку воды от коллоидных веществ с одновременной очисткой от грубодисперстных примесей и обесцвечивание воды путём дозировки в обрабатываемую воду специального реагента – коагулянта. Который образует новую дисперстную систему со знаком заряда частиц, противоположным знаку заряда каллоидов природных вод (обычно зараженных отрицательно). При этом происходит взаимная коагуляция разноимённых заряженных коллоидов при их взаимодействии с дестабилизированными участками поверхности, называемая гетерокоагуляцией. В дальнейшем микрохлопья сцепляются, захватывая грубодисперстные примеси и воду, и образуют коагуляционную структуру в виде хлопьев (флоккул) размером 0,5-3мм. Макрофаза затем выделяется из воды в аппаратах для коагуляции- осветлителях и далее в пористой загрузке осветлительных фильтров. В качестве коагулянтов применяют ; сульфат алюминия AL2(SO4)2 *18H2O или сульфат двухвалентного железа FeSO4*7H2O  , причём последний используют при совмещении процессов коагуляции и известкования в осветлителях. Процесс коагуляции требует для своего завершения время (4-5минут). Хлопья, вначале невидимые, постепенно соединяются в крупные комплексы, вызывая помутнение воды. Затем образуются более крупные рыхлые хлопья, захватывающие ГДП и воду. Режим потока воды влияет на формирование хлопьев. Скорость воды в зоне формирования не должна превышать 1,5мм /сек. Температура 30-40 и перемешивание  вызывает более частые и сильные столкновения коагулируемых частиц, приводящие к их слипанию. Дозировка коагулянта определяется составом коллоидных примесей и солесодержанием обрабатываемой воды. Обычно 0,3-0,8мг-экв/дм3. Значение рН среды оказывает влияние на скорость гидролиза коагулянта,а также на состояние удаляемых из воды примесей. При коагуляции сернокислым алюминием оптимальное значение рН, устанавливаемое экспериментально находится в пределах 5,5-7,5.

Информация о работе Показатели качества воды