Производство этилена пиролизом этана

Автор работы: Пользователь скрыл имя, 09 Мая 2013 в 13:46, курсовая работа

Краткое описание

Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла на винный спирт. Вначале его отождествляли с "горючим воздухом", т.е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Труствик, Бонд и Лауеренбург и описали под названием "маслородного газа", так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена ("масло голландских химиков").

Содержание

Введение…………………………………………………………………………………….5
1. Аналитический обзор……………………………………………………………………6
1.1 Теоретические сведения процесса пиролиза………………………………………….6
1.2 Способы получения этилена…………………………………………………………..10
1.2.1 Непрерывный контактный пиролиз во взвешенном слое твердого теплоносителя………………………………………………………………………………10
1.2.2 Непрерывный пиролиз в движущемся слое твердого теплоносителя……………11
1.2.3 Каталитическое гидрирование ацетилена в этилен………………………………..13
1.2.4 Окислительный пиролиз этана……………………………………………………...14
1.2.5 Пиролиз углеводородного сырья в расплавленных средах……………………….16
1.2.6 Пиролиз в присутствии гетерогенных катализаторов и гомогенных инициаторов………………………………………………………………………………..16
1.2.7 Пиролиз в трубчатых печах…………………………………………………………17
2 . Технологическая часть…………………………………………………………………20
2.1 Химизм процесса………………………………………………………………………20
2.2 Описание технологической схемы……………………………………………………20
2.3 Технико-технологические расчёты………………………………………………...…22
2.3.1 Материальный расчет………………………………………………………………..22
2.3.2 Тепловой расчет аппарата…………………………………………………………..28
Список использованных источников…………………………………………………….32

Прикрепленные файлы: 1 файл

этилен мой.doc

— 1.73 Мб (Скачать документ)

 

Важнейший параметр процесса – температура – определяет степень превращения исходных веществ по реакциям, протекающим при пиролизе. Так как первичные реакции термического разложения исходных веществ можно рассматривать как реакции первого кинетического порядка, скорости их протекания линейно зависят от концентрации исходных веществ, а степень разложения не зависит от их концентрации, но зависит от температуры. От температуры зависит также и доля (из общего количества) образовавшихся на первой стадии различных радикалов, подлежащих распаду и, следовательно, выходы различных низших алкенов. Таким образом, температура процесса – фактор, определяющий как степень разложения исходного вещества (степень превращения), так и распределение продуктов пиролиза. С увеличением температуры в результате первичной реакции повышаются выходы низших алкенов, метана и водорода и снижается выход алканов.

Другим важным параметром пиролиза является время  пребывания пиролизуемых веществ в  зоне реакции, называемое иногда временем контакта. Под временем пребывания понимают промежуток времени, в течение которого поток реагирующего вещества находится в реакционном змеевике при таких температурах, когда реакция пиролиза протекает со значительной скоростью. Выход ряда продуктов (в том числе этилена и других алкенов) в зависимости от времени пребывания проходит через максимумы для каждой температуры; эти зависимости характерны для любых исходных нефтяных фракций. Выходы водорода и метана с увеличением времени пребывания непрерывно возрастают [3].

 Таким образом, увеличение температуры пиролиза с одновременным соответствующим сокращением времени пребывания (часто, но не совсем точно эти изменения называют увеличением жесткости процесса) способствует достижению более высоких выходов целевых продуктов, том числе этилена.

Параметры, влияющие на селективность пиролиза. При пиролизе газообразных продуктов селективность  рекомендуется определять как отношение  образовавшегося этилена к количеству превращенного сырья, которое в  данном случае легко может быть найдено. Однако, при пиролизе жидких видов сырья практическое определение степени превращения компонентов исходного сырья трудоемко и недостаточно точно. В этом случае целесообразно принять за меру селективности отношение выхода метана, как количественно преобладающего побочного продукта, к выходу этилена (или алкенов С2 - С4). Повышению селективности пиролиза способствует подавление вторичных реакций разложения целевых продуктов – алкенов – при достаточной степени осуществления первичных реакций, ведущих к их получению. Для этого требуется уменьшить время пребывания сырья в зоне реакции и понизить парциальное давление углеводородов.

Важным фактором, влияющим на селективность пиролиза, является давление в зоне реакции, точнее – парциальное давление углеводородной части реагирующего потока. Этилен и другие низшие алкены образуются в результате первичных реакций первого кинетического порядка, степень превращения сырья по этим реакциям от давления не зависит, но алкены реагируют дальше, превращаясь в продукты полимеризации или конденсации и степень их превращения по этим направлениям пропорциональна парциальному давлению. Парциальное давление углеводородной части реагирующей смеси определяется суммарным давлением в реакторе и разбавлением сырья водяным паром [3]. 

В процессе пиролиза образуется и большей частью откладывается на стенках трубчатого реактора твердый коксообразный продукт (пиролизный кокс), состоящий почти целиком из углерода. Наблюдающаяся в промышленных печах глубина превращения исходных углеводородов в кокс невелика: выход кокса составляет менее 0,01% для сырья – прямогонного бензина, но неблагоприятное воздействие пленки кокса, отлагающегося в трубах, на результаты пиролиза, значительно. Отложение кокса затрудняет теплопередачу через стенку реактора, способствует ускорению науглероживания, коррозии и износа материала труб, что ведет к снижению срока службы труб, уменьшению длительности межремонтных периодов эксплуатации печей. Вследствие большого практического значения коксообразования и отложения кокса на стенках реакторов пиролиза влияние параметров процесса на отложение кокса, рассматривается специально.

Получившийся при промышленном пиролизе кокс неоднороден и образует в зависимости от условий процесса ряд коксообразных продуктов, различных  по строению и физическим свойствам [1].

 

 

 

 

 

1.2 Способы получения  этилена

 

Существующие схемы процесса пиролиза различаются способом подвода  тепла: внешний обогрев топочными  газами, при помощи высокоперегретого  водяного пара (гомогенный или адиабатический пиролиз), частичное сгорание сырья при подаче кислорода (окислительный пиролиз) и нагревание неподвижным или перемещающимся твердым теплоносителем (регенеративный пиролиз) [4]. 

 

1.2.1 Непрерывный  контактный пиролиз во взвешенном  слое твердого теплоносителя

 

Высокая эффективность процессов тепло- и массообмена во взвешенном слое обусловили развитие работ по созданию установок пиролиза по этому принципу. В настоящее время существует установка получения этилена в одном агрегате (свыше 20000 т/год этилена). Схема установки приведена на рисунке 1.2. Установка предназначена для переработки газообразных и жидких, включая и сырую нефть. В качестве теплоносителя используется кварцевый песок, разделенный на фракции. Процесс осуществляется при разбавлении водяным паром [1].

Установка работает следующим образом. Сырье испаряется и подогревается до 400°С в огневом подогревателе 1 и в смеси с перегретым до такой же температуры водяным паром подается в реактор 2, во взвешенный слой песка, температура которого равна 700–850°С (в зависимости от вида сырья). В результате контакта сырья и песка-теплоносителя происходит пиролиз углеводородов. Пирогаз из реактора 2 направляется в циклон 3. В циклоне отделяется песок, унесенный потоком газа из реактора. Пирогаз охлаждается в котле-утилизаторе 4, а затем в холодильнике 5 и вентилятором 6 подается в электрофильтр 7. В электрофильтре выделяются жидкие и твердые продукты пиролиза, используемые в дальнейшем как топливо. Пирогаз из электрофильтра через концевой холодильник 8 и сепаратор 9 направляется на газоразделение. При пиролизе образуется кокс, обволакивающий пленкой частицы песка-теплоносителя. Песок непрерывно выводится из реактора и направляется на регенерацию. Регенерацию, выжигание кокса и нагрев теплоносителя осуществляют в газлифте 10, куда подают предварительно подогретый воздух и некоторое количество жидких продуктов пиролиза, выделившихся в электрофильтре. Продукты сгорания отделяются от песка-теплоносителя в бункере 11 и через циклон 12, пароперегреватель 13, воздухоподогреватель 14 и циклон 15 выбрасываются в атмосферу.

 

                                    

 

1 – подогреватель; 2 – реактор; 3, 12, 15 – циклон; 4 –  котел-утилизатор; 5, 8 – холодильник; 6 – вентилятор; 7 – электрофильтр; 9 – сепаратор; 10 – газлифт; 11 –  бункер; 13 – пароподогреватель; 14 – воздухоподогреватель.

Рисунок 1.2 –  Схема установки контактного  пиролиза с твердым теплоносителем во взвешенном слое

 

Достоинства этого  способа заключаются в легкости подвода тепла, высокой производительности агрегатов и возможности переработки самого тяжелого сырья, включая мазут и сырую нефть.

Недостатки:

    1. трудно вести процесс при очень малом времени контакта.
    2. капитальные вложения довольно велики.

 

1.2.2 Непрерывный  пиролиз в движущемся слое  твердого теплоносителя

 

Как показали расчеты и эксперименты в промышленном масштабе, при непрерывном пиролизе в движущемся слое твердого теплоносителя можно увеличить выход целевых продуктов (этилен) путем применения более высоких температур, меньшего времени контакта и более низких средних давлений по сравнению с используемыми в трубчатых печах. Схема промышленной установки непрерывного пиролиза с твердым движущемся теплоносителем изображена на рисунке 1.3. Основными элементами установки являются два аппарата: подогреватель 1, в котором теплоноситель, двигаясь сверху вниз, нагревается до 950°С при непосредственном контакте с топочными газами, и реактор 2, в котором при температуре около 900°С происходит пиролиз поднимающегося углеводородного сырья при соприкосновении с опускающимся теплоносителем. Подогреватель соединен с реактором изолированной перепускной трубой. Охлажденный в реакторе теплоноситель подается через дозатор 3 в газлифт 4; воздух в газлифт нагнетается вентилятором 5 и через воздухоподогреватель 6. Дозатор регулирует скорость перемещения теплоносителя в системе. Из газлифта теплоноситель поступает в основной сепаратор 7 для отделения пыли, откуда самотеком направляется в подогреватель. Теплоноситель нагревается в результате прямого контакта в подогревателе продуктами сгорания природного газа, полученными в специальной круговой топке 8. Топка работает под давлением до 0,35, поддерживаемым вентиляторами 9, 10. Мелочь теплоносителя отделяется в сепараторе 11.

Подлежащие  нагреву и крекингу пары сырья  вводятся в нижнюю часть реактора через круговой распределитель, обеспечивающий равномерное распределение сырья по сечению. Продукты пиролиза на выходе из ректора попадают в аппарат первичной закалки 12, где температура их снижается до 250-400°С. В дальнейшем пирогаз охлаждается до 50-60°С в оросительном скруббере. На перепускной трубе, связывающей подогреватель с реактором. Для предупреждения смешения продуктов сгорания с пирогазом создается затвор подачей водяного пара. Аналогичный затвор создается между дозатором и реактором для того, чтобы не допустить смешения сырья с газлифтным воздухом.

 

 

 

                                                               


1 – подогреватель; 2 – реактор; 3 – дозатор; 4 – газлифт; 5, 9, 10 – вентилятор; 6 – воздухоподогреватель; 7 – сепаратор; 8 – круговая топка; 12 – аппарат первичной закалки.

Рисунок 1.3 –  Схема установки пиролиза с движущимся твердым теплоносителем

 

При сравнении  реактора с движущимся теплоносителем с трубчатой печью видно, что  при пиролизе на этилен в реакторе можно поддерживать более высокую температуру и меньшее время контакта, чем в трубчатой печи. Реактор работает при небольших перепадах давления и без рециркуляции в системе пиролиз-газоразделение.

С другой стороны, на реактор требуется большие  капитальные затраты, расход технологического пара выше, необходима периодическая очистка системы от кокса, износ твердого теплоносителя повышенный и в связи с этим увеличенные эксплуатационные расходы [2].

 

1.2.3 Каталитическое  гидрирование ацетилена в этилен

 

В Германии был разработан и осуществлен в промышленности процесс получения этилена гидрированием ацетилена.

 

C2 H2 + H2 = C2 H2 + Qп

 

Оптимальная температура  процесса 180-320 °С в зависимости от активности катализатора.

Ацетилен, полученный из карбида кальция (чистота 98-99%), сжимается в компрессоре до 1,5-2, охлаждается в холодильнике и очищается твердым адсорбентом (алюмогелем) в адсорбере от паров масла, так как последнее является ядом для катализатора. Водород, полученный из установки газоразделения (чистота 96-98%), сжимается в компрессоре, охлаждается в холодильнике, осушается и очищается от паров масла в адсорбере . Предварительный подогрев водорода и ацетилена осуществляется за счет тепла реакции либо в реакторе, либо в выносных теплообменниках. Оптимальная температура в реакторе поддерживается автоматически непрерывной подачей охлаждающей воды в трубчатый теплообменник реактора [1].

Процесс гидрирования ведут при значительных избытках водорода. Гидрирование ацетилена осуществляется практически полностью. В качестве катализатора используется палладий, нанесенный на силикагель. Содержание палладия в катализаторе не превышает 0,01%. Продолжительность непрерывной работы катализатора около одного года.

Фирмой «Бадише  анилин унд сода фабрик» (ФРГ) разработан способ пиролиза сырой нефти в аппарате с кипящим слоем порошкообразного нефтяного кокса. Количество вводимого в реактор кислорода регулируется, исходя из условия обеспечения автотермического процесса пиролиза. Перерабатываемое сырье вводится в кипящий слой на 500 мм выше решетки с целью отделения кислородной зоны от зоны пиролиза углеводородов. Высота кислородной зоны составляет 100 мм.

Установлено, что  максимальный выход непредельных углеводородов  С2 - С4 при времени контакта 1 сек. наблюдается при температуре 720-730°С, в то время как для выхода этилена оптимальная температура равна ~800°С. Рабочая температура процесса принята равной 720°С, т.е несколько ниже, чем при пиролизе по другим методам. Выбор такой температуры обусловлен тем, что в определенном температурном интервале показатели пиролиза при пониженной температуре и повышенном времени контакта аналогичны показателям при повышенной температуре и меньшем времени контакта [3].

Расход кислорода  составляет около 300 нм3 на 1 т сырой нефти. Кислород реагирует преимущественно с наиболее тяжелыми продуктами пиролиза, которые подаются в реактор из промывной колонны, а также с коксом, образующимся из этих продуктов на поверхности частиц теплоносителя. Количество рециркулирующих тяжелых продуктов при переработке парафинистой и асфальтеновой нефтей составляет соответственно 250 кг и 750 кг.

На показатели процесса большое влияние оказывает  время пребывания газа пиролиза в  зоне высоких температур после выхода из кипящего слоя, т. е. в надслойном объеме аппарата.

Недостатком процесса является значительное увеличение выделяющейся сажи от 10 до 40–80 г при увеличении времени контакта. Но сажеобразование может быть уменьшено путем увеличения добавки водяного пара.

 

1.2.4 Окислительный  пиролиз этана

 

Окислительным пиролизом называется такой, при котором углеводород пиролизуется в результате нагрева при сгорании части этого же углеводорода в кислороде воздуха. Окислительный пиролиз применяется при производстве ацетилена из метана, а также для разложения этана в этилен. При этом параллельно идут следующие процессы:

Конверсия этана

Информация о работе Производство этилена пиролизом этана