Автор работы: Пользователь скрыл имя, 19 Октября 2013 в 07:48, курсовая работа
В данном курсовом проекте описана методика технологических расчетов тестомесильной машины, которые включают в себя расчеты подтверждающие работоспособность проектируемой конструкции машины, а также техноэкономические расчеты подтверждающие целесообразность данного усовершенствования. Также представлена модернизированная линия с возможностью производства ржаного хлеба, в процессе приготовления которого участвует проектируемая машина.
Введение.
Обзор аналогичных устройств.
Описание разрабатываемой машины
Расчетная часть.
Технологический расчет.
Кинематический расчет привода тестомесильной машины.
Технико-экономическое обоснование.
Охрана труда и техника безопасности
Литература
Приложения-спецификации
Введение.
Литература
Приложения-спецификации
Введение
В данном курсовом проекте
описана методика технологических
расчетов тестомесильной машины, которые
включают в себя расчеты подтверждающие
работоспособность
Тестомесильная машина Т2-М-63
Рисунок 2 - Тестомесильная машина Т2-М-6З со стационарной дежой
Тестомесильная машина Т2-М-6З со стационарной дежой применяется для замеса высоковязких полуфабрикатов (бараночного и сухарного теста)
Машина (рисунок 2) состоит из металлической корытообразной емкости 18 объемом 0,38 м которая закрыта стационарной крышкой 10.
Внутри емкости расположены два месильных лопастных органа 11, укрепленных на двух параллельных валах — переднем 1 7и заднем 12, установленных в горизонтальной плоскости.
Месильные органы вращаются навстречу друг другу с частотой 38 мин- от электродвигателя 7 через клиноременную передачу и две пары косозубых зубчатых передач. Подача муки и жидких компонентов для замеса теста производится через горловину 4 и патрубок З при вращении месильных органов.
Замес теста производится путем обработки компонентов между вращающимися лопастями и стенками емкости. По окончании замеса емкость поворачивается на угол 800 вокруг оси переднего вала и выходит из-под стационарной крышки 10. Одновременно открывается откидная крышка 9, и тесто выгружается через люк. Поворот емкости для выгрузки теста осуществляется от реверсивного электродвигателя 8, который через клиноременную передачу вращает винт 13. Этот винт перемещает гайку которая входит двумя штифтами в продольные пазы рычага 16, укрепленного на днище емкости. В результате рычаг поворачивает емкость для выгрузки теста. Выключение электродвигателя в крайних положениях емкости осуществляется автоматически с помощью конечных выключателей 14.
Месильная емкость и
все элементы машины смонтированы на
станине 15. Электрооборудование
Рисунок 3- Тестомесильные машины с откатной дежой серии АЕ
Модель |
Мука, кг |
Тесто, кг |
Рабочий обьем дежи, л |
Мощность, кВт |
Габариты, мм |
Вес, кг |
AE 160 |
160 |
120 |
150 |
1,8/3,1 |
1070 х 780 х 1200 |
760 |
AE 200 |
200 |
160 |
200 |
3,0/4,5 |
1300 х 960 х 1355 |
1080 |
AE 250 |
250 |
200 |
250 |
3,0/4,5 |
1330 х 1020 х 1355 |
1100 |
AE 300 |
300 |
220 |
275 |
4,0/7,5 |
1390 х 1079 х 1355 |
1280 |
Промышленные тестомесильные машины с откатной дежой серии АЕ делают процесс приготовления теста более производительным и гибким, т.к. позволяют использовать две и более дежи в работе с одной машиной. Данная линия тестомесов представлена машинами с объемом дежи на 160 кг и 240 кг теста. Промышленная серия АЕ была сконструирована для обслуживания крупных хлебопекарных комбинатов, и поэтому данные тестомесы предназначены для ежедневной работы с соответствующими объемами теста. Тестомесы сконструированы таким образом, чтобы обеспечить максимальную прочность корпуса машины и ее надежность в работе. Масляно-гидравлическая система подъема-опускания месильной головки и фиксация тележки являются полностью автоматическими. Операция перемещения дежи предельно проста - когда процесс замеса завершен, месильная головка автоматически поднимается и освобождает дежу, а благодаря компактному размеру тележки, дежа легко передвигается, даже будучи заполненной тестом. Для повторения рабочего цикла следующего замеса теста придвиньте дежу с ингредиентами к машине; специальный электромагнитный прибор определит наличие дежи и зафиксирует ее на месте. Панель управления проста в применении и обеспечивает выполнение всех функций тестомесильной машины:
Когда тележка с дежой вставлена в машину и приводы состыкованы должным образом, на панели управления загорается зеленая лампочка. Затем нажатием на кнопку запускается автоматический режим замеса: гидравлические зажимы закрываются, опускается месильная головка и начинается непосредственно цикл замеса теста. В конце цикла замеса месильная головка поднимается, открываются зажимы и освобождается тележка с дежой.
2. Описание разрабатываемой машины
Бункерный агрегат И8-ХТА-12, (рис. 2.1). Предназначен для приготовления пшеничного теста двухфазным способом на большой густой опаре. Оборудован стационарным шестисекционным бункером для опары вместимостью 12 м3 и наклонным корытом для брожения теста вместимостью 2,8 м3, которое установлено так, чтобы тесто из него поступало самотеком в тестоделительную машину. Тесто замешивается в машинах И8-ХТА, а транспортируется по трубам с помощью лопастного насоса-дозатора. Бункер 3 агрегата установлен на опорах 2.
Тестомесильные машины 10 для замеса опары и теста расположены так, что под ними размешаются лопастный дозатор опары 9 и аналогичный по конструкции нагнетатель теста. Замешенная опара поступает в бункер по транспортной трубе 8 и с помощью распределительного поворотного лотка 14 направляется в определенную секцию бункера. Лоток закреплен на общем валу с поворотным днищем, размешенным в конусе 4. В поворотном днище имеется вырез для выгрузки опары из одной секции бункера. Приводное устройство 15 периодически по мере загрузки секции опарой поворачивает лоток н поворотное днище на один шаг И переводит загрузку на следующую секцию. Выброженная опара С помощью насоса дозатора 5 транспортируется по трубе 6 к тестомесильной машине. Замешенное тесто подается лопастным насосом по трубе 7 в наклонное корыто 18, установленное на четырех опорах 1.
Рисунок 2.1 Бункерный агрегат И8-ХТА-12.
1, 2 – опоры корита и бункера, 3- шестисекционный бункер, 4 – приемный конус с подвижным днищем, закрепленным на валу совместно с распределяющим лотком 14,
5 и 9 - лопастные насосы, 6, 7, 8 – транспортне трубы, 10 – тестомесильная машина, 11 – дозировочная станция, 12 – лестница, 13 – пульт управления, 15 – привод распределительного лотка, 16 – ограждение площадки, 17 – площадка для обслуживания, 18 – корито для брожения теста, 19 – тестоспуск.
Для кинематического расчета не обходимо ознакомится с устройством и принципом действия тестомесильной машины.
Тестомесильная машина И8-ХТА-12
Однокамерная тестомесильная машина с двумя параллельными валами и Т-образными месильными лопастями, размещенными в смежных полуцилиндрических камерах так, что лопасти одного вала заходят в пространство между лопастями другого. Выпускается серийно, ею комплектуют бункерные тестоприготовительные агрегаты И8-ХТА-12. В этих машинах оказывается более интенсивное воздействие на тесто при замесе по сравнению с одновальными. Применяется в основном для замеса пшеничного и ржаного теста.
Рис. 2.1. Тестомесильная машина И8-ХТА-12/1:
1 — патрубок подачи муки; 2 — дозатор муки; 3 — месильные валы; 4 — крышка; 5 — месильная лопасть; 6 — месильное корыто; 7 — станина; 8 — подшипник; 9 — выпускной патрубок
На станине расположено месильное корыто, состоящее из двух полуцилиндрических желобов. В нем установлены два месильных вала в подшипниках. На концах валов закреплены две прямозубые шестерни, обеспечивающие вращение валов в разные стороны. К ним подсоединена приводная шестерня. Внутри корыта имеются перегородки, сзади — патрубок для подачи опары и жидких компонентов, сверху — патрубок для подключения дозатора муки и две крышки с электроблокирующим устройством. Выпуск теста осуществляется через патрубок. На каждом валу закреплено по одиннадцать месильных лопастей, которые устанавливают под разными углами.
Принцип работы машины
Рис. 2.2. Тестомесильная машина И8-ХТА-12/1
В питателе (15) (рис. 2.2) датчиками (16) и (17) поддерживается необходимый уровень муки. За один оборот вала (4) штанга проворачивает с помощью храпового механизма (18) турникет (19) с карманами для муки. При этом в корыто (1) подается доза муки на замес. Через трубу (14) в корыто подаются жидкие компоненты. Тесто, замешиваясь месильным валом, передвигается вдоль корыта лопатками, установленными под углом к оси вала. Через раструб (2) замешанное тесто подается в следующую машину по технологическому циклу. Для установки и фиксации лопатки (5) в требуемом положении в зависимости от интенсивности замеса вращением контргайки (24) и гайки (23) освобождают стержень лопатки. Провернув и установив необходимый угол между осью месильного вала и касательной к поверхности лопатки, втулку (21) устанавливают торцовой криволинейной поверхностью на вал (4), а стержень лопатки (5) коническим поясом садят в коническое отверстие втулки, при этом затягивают гайку (23) и контргайку (24).
Таблица 1.
Технические характеристики тестомесильной машины И8-ХТА-12
Производительность, кг/ч |
1300 |
Вместимость месильной камеры, дм3 |
240 |
Масса замешиваемого теста, кг |
100 |
Частота вращения месильного вала, с-1 |
1-1,3 |
Мощность электродвигателя, кВт |
4 |
Длительность замеса, мин |
12-15 |
Масса машины, кг |
800 |
Для модернизации и болем эффективной работы агрегата заменим шнекове насосы роторними.
Рассмотрим строение ипринцим действия пластинчатого роторного насоса. Пластинчатый насос — это роторно-поступательный насос с рабочими органами (вытеснителями) в виде плоских пластин. Пластинчатые насосы могут быть однократного, двукратного или многократного действия.
На рис. 2.3, а приведена конструктивная схема пластинчатого насоса однократного действия.
В пазах вращающегося ротора 4, ось которого смещена относительно оси неподвижного статора 6 на величину эксцентриситета ( е ), установлены несколько пластин 5 с пружинами 8. Вращаясь вместе с ротором, эти пластины одновременно совершают возвратно-поступательное движение в пазах 7 ротора. Рабочими камерами являются объемы 1 и 3, ограниченные соседними пластинами, а также поверхностями ротора 4 и статора 6. При вращении ротора рабочая камера 1, соединенная с полостью всасывания, увеличивается в объеме и происходит ее заполнение. Затем она переносится в зону нагнетания. При дальнейшем перемещении ее объем уменьшается и происходит вытеснение жидкости (из рабочей камеры 3).
Кроме того, рабочий объем пластинчатого насоса может быть увеличен за счет кратности его работы ( k ), что достаточно широко применяется на практике. На рис. 2.3, б приведена конструктивная схема пластинчатого насоса двукратного действия. Внутренняя поверхность такого насоса имеет специальный профиль, что позволяет каждой пластине за один оборот вала дважды производить подачу жидкости. У пластинчатого насоса двукратного действия имеются две области всасывания 9, которые объединены одним трубопроводом, и две области нагнетания 10, также объединенные общим трубопроводом. На практике применяются насосы и с большей кратностью, но их конструкции сложнее, поэтому использование таких насосов ограничено.
Для пластинчатых насосов важным является обеспечение герметичности в месте контакта пластины и корпуса (точка 2 на подач пластинчатого насоса рис. 1, а). В насосах с высокими скоростями это может быть получено за счет центробежных сил. В конструкции, показанной на рис. 1, а, герметичность обеспечивают пружины 8. В некоторых насосах это достигается за счет давления, создаваемого в пазах 7.
Насосы могут быть регулируемыми,
т.е. иметь переменный рабочий объем.
Конструкция пластинчатого