Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 20:37, контрольная работа
Совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии, называется гидроприводом. Обязательными элементами гидропривода являются насос и гидродвигатель.
Гидропривод представляет собой своего рода «гидравлическую вставку» между приводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.). Основное назначение гидропривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).
Негигроскопичность. Для гидроприводов, работающих на минеральном масле, необходимо принимать меры, исключающие возможность попадания воды в масло, поскольку в этом случае возникают неполадки вплоть до полного выхода из строя. Вода может проникать в гидросистему через уплотнения гидроцилиндров и приводных валов, через негерметичные водяные охладители и в форме конденсата, образующегося на стенках бака из-за повышенной влажности воздуха. Вода (конденсат) может быть и в свежей рабочей жидкости, заливаемой в бак. Если содержание воды превышает 0,2 % от общего объема, необходимо заменить рабочую жидкость. Отделить воду от рабочей жидкости можно с помощью сепараторов или центрифуг во время работы гидропривода (в основном для больших гидросистем).
В гидроприводах, работающих на открытом воздухе в условиях высокой влажности и возможно дождя, после воздушного фильтра может устанавливаться воздухоосушитель, который осушает засасываемый в бак объем воздуха.
Поскольку вода имеет более высокий удельный вес, она скапливается на дне бака и может удаляться в периоды простоя гидропривода (минеральное масло и вода не образуют химического соединения и могут снова разделяться).
Когда в баке имеется индикатор уровня на полную глубину, воду можно отчетливо видеть. Если осторожно открыть сливной кран, то сначала сливается вода.
В крупных баках в наиболее низких
точках часто устанавливают
Негорючесть.Гидроприводы должны работать также в нагретых или горячих зонах" предприятий, в условиях производства с открытым огнем или при очень высокой температуре. Для снижения риска, связанного с возможностью растрескивания трубопроводов или шлангов, применяются рабочие жидкости с высокой точкой воспламенения, трудновоспламеняющиеся или вообще негорючие.
Нетоксичность.Для предотвращения ущерба здоровью или окружающей среде, необходимо принимать во внимание соответствующие рекомендации производителей рабочих жидкостей.
Хорошие антикоррозионные свойства. Изготовители насосов, гидроаппаратов, гидромоторов, гидроцилиндров испытывают свою продукцию на минеральных маслах, обеспечивающих коррозионную защиту. Способность минеральных масел противостоять коррозии обеспечивается за счет химических присадок, которые образуют на металлических поверхностях водоотталкивающую пленку и при старении минерального масла нейтрализуют продукты распада, вызывающие коррозию.
После испытаний гидравлических компонентов оставшееся в них масло снова возвращается в бак. Пленка минерального масла, остающаяся на всех компонентах, защищает от коррозии вплоть до ввода в эксплуатацию. При длительном складировании компонентов необходимо осуществлять специальные мероприятия по коррозионной защите (например, с помощью консервирующего масла).
Невыделение клейких субстанций. Во время длительных периодов простоя, при эксплуатации, нагреве и охлаждении и в результате процессов старения рабочие жидкости не должны образовывать веществ, которые вызывают «склеивание» подвижных частей гидравлических компонентов.
Хорошая фильтруемость. Рабочая жидкость в период эксплуатации гидропривода постоянно фильтруется напорными или сливными фильтрами (или в обоих направлениях) с целью удаления абразивных частиц. В зависимости от типа рабочей жидкости и ее вязкости выбираются размер фильтра и фильтрующий материал.
С увеличением вязкости рабочей жидкости увеличивается перепад давлений на фильтроэлементе (Ар), поэтому требуется установка большего по размерам фильтра. При использовании агрессивных рабочих жидкостей должны применяться соответствующие фильтрующие среды.
Содержащиеся в рабочей
Совместимость и взаимозаменяемость
с другими гидравлическими
Кроме того, все гидравлические компоненты, уплотнения и шланги должны быть очищены от остатков старой рабочей жидкости. Неправильное проведение работ может полностью вывести гидропривод из строя.
Образование шлама.Рабочая жидкость и введенные в нее присадки не должны разлагаться в течение всего времени эксплуатации и на должны приводить к образованию шлама (эффект залипания).
Простота обслуживания. Высокие затраты на обслуживание требуют рабочие жидкости, которые, например, после длительного простоя должны быть тщательно перемешаны перед последующей эксплуатацией. Рабочие жидкости, у которых присадки быстро теряют свои свойства, должны чаще подвергаться химической и / или физической проверке.
Проверка рабочих жидкостей должна производиться наиболее простым способом. В сомнительных случаях поставщики рабочих жидкостей и фильтров могут произвести анализ проб и принять решение о целесообразности замены рабочей жидкости.
Экологическая допустимость. Наилучшим способом защиты окружающей среды при эксплуатации гидроприводов являются их квалифицированное конструирование, правильные сборка, эксплуатация и техобслуживание.
Применение экологически чистых жидкостей не является заменой вышеуказанных мероприятий.
Экологически чистые рабочие жидкости должны удовлетворять следующим требованиям:
- Хорошая биологическая
- Легкость утилизации
- Нетоксичность для флоры и фауны
- Отсутствие водозагрязнения
- Отсутствие загрязнения
- Отсутствие раздражения кожи
и слизистой оболочки в
- Отсутствие резкого запаха
До сих пор не существуют нормативные документы или законодательные акты, устанавливающие свойства «экологически безвредных» (или лучше —«экологически приемлемых») рабочих жидкостей.
4.Гидростатика. Сущность и смысл основных законов гидростатики: гидростатическое давление и его свойства. Полное гидростатическое давление. Дифференциальные уравнения равновесия жидкости
Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практическое применение. В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением. Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.1, а). На дно резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G.Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое давление, действующее на дно резервуара.
Гидростатическое давление обладает свойствами.
Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.
Для доказательства
этого утверждения вернемся к
рис.1, а. Выделим на боковой стенке
резервуара площадку Sбок (заштриховано).
Гидростатическое давление действует
на эту площадку в виде распределенной
силы, которую можно заменить одной равнодействующей,
которую обозначим P. Предположим,
что равнодействующая гидростатического
давления P, действующая
на эту площадку, приложена в точке А и направлена
к ней под углом φ (на рис. 1 обозначена
штриховым отрезком со стрелкой). Тогда
сила реакции стенки R на жидкость
будет иметь ту же самую величину, но противоположное
направление (сплошной отрезок со стрелкой).
Указанный вектор R можно разложить
на два составляющих вектора: нормальный Rn (
Рис. 1. Схема, иллюстрирующая свойства гидростатического давления а - первое свойство; б - второе свойство
Сила нормального давления Rn вызывает в жидкости напряжения сжатия. Этим напряжениям жидкость легко противостоит. Сила Rτ действующая на жидкость вдоль стенки, должна была бы вызвать в жидкости касательные напряжения вдоль стенки и частицы должны были бы перемещаться вниз. Но так как жидкость в резервуаре находится в состоянии покоя, то составляющая Rτ отсутствует. Отсюда можно сделать вывод первого свойства гидростатического давления.
Свойство 2. Гидростатическое давление неизменно во всех направлениях.
В жидкости, заполняющей какой-то резервуар, выделим
элементарный кубик с очень малыми сторонами
Δx, Δy, Δz (рис.1, б). На
каждую из боковых поверхностей будет
давить сила гидростатического давления,
равная произведению соответствующего
давления Px, Py , Pz на элементарные
площади. Обозначим вектора давлений,
действующие в положительном направлении
(согласно указанным координатам) как P'x, P'y, P'z, а вектора
давлений, действующие в обратном направлении
соответственно P''x, P''y, P''
P'xΔyΔz=P''xΔyΔz
P'yΔxΔz = P''yΔxΔz
P'zΔxΔy + γΔx, Δy, Δz = P''zΔxΔy
где γ - удельный
вес жидкости;
Δx, Δy, Δz - объем кубика.
Сократив полученные равенства, найдем, что
P'x = P''x; P'y = P''y; P'z + γΔz = P''z
Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P'z и P''z, можно пренебречь и тогда окончательно
P'x = P''x; P'y = P''y; P'z=P''z
Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что давления по различным осям одинаковы, т.е.
P'x = P''x = P'y = P''y = P'z=P''z
Это доказывает второй свойство гидростатического давления.
Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.
Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде
P=f(x, y, z)
Пусть жидкость содержится в сосуде (рис.2) и на ее свободную поверхность действует давление P0 . Найдем гидростатическое давление P в произвольно взятой точке М, расположенной на глубине h. Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объем жидкости высотой h. Рассмотрим условие равновесия указанного объема жидкости, выделенного из общей массы жидкости. Давление жидкости на нижнее основание цилиндра теперь будет внешним и направлено по нормали внутрь объема, т.е. вверх.
Рис. 2. Схема для вывода основного уравнения гидростатики
Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикальную ось:
PdS - P0 dS - ρghdS = 0
Последний член уравнения представляет собой вес жидкости, заключенный в рассматриваемом вертикальном цилиндре объемом hdS. Силы давления по боковой поверхности цилиндра в уравнение не входят, т.к. они перпендикулярны к этой поверхности и их проекции на вертикальную ось равны нулю. Сократив выражение на dS и перегруппировав члены, найдем
P = P0 + ρgh = P0 + hγ
Полученное уравнение называют основным уравнением гидростатики. По нему можно посчитать давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления P0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев жидкости.
Из основного уравнения гидростатики видно, что какую бы точку в объеме всего сосуда мы не взяли, на нее всегда будет действовать давление, приложенное к внешней поверхности P0. Другими словами давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково. Это положение известно под названием закона Паскаля. Запишем уравнение Эйлера
.
Если жидкость покоится
.
Дифференциальные уравнения равновесия жидкости в проекции на оси декартовой системы координат могут быть записаны так
.
Здесь Fx, Fy, Fz - проекции на оси x,y,z сил, действующих на единицу массы рассматриваемой жидкости.
Умножая давления соответственно на dxdydz и складывая их, получаем
.
Левая часть уравнения представляет полный дифференциал
следовательно, и правая часть должна быть также полным дифференциалом, для этого необходимо и достаточно, при постоянном r, чтобы существовала функция U(x,y,z) такая что
, , .
Имеем
.
Проинтегрировав, получим
,
где С - постоянная интегрирования.
Если в какой-либо точке известно давление po и постоянная функция Uo, то
,
из интеграла имеем
.
В частности, когда жидкость находится в поле сил тяжести
, , .
Следовательно,
Уравнение для давления принимает вид
.
Свободная поверхность жидкости плоская z=const. При равновесии жидкости в поле земного тяготения поверхности уровня представляют собой горизонтальные плоскости.
5.Сущность законов Паскаля и Архимеда.
Закон Паскаля. Давление на поверхность жидкости, произведенное внешними силами, передается жидкостью во все стороны одинаково.Данный закон справедлив и в том случае, когда на жидкость действуют объемные силы.Пусть жидкость находится в сосуде под поршнем (рис. 1.