Автор работы: Пользователь скрыл имя, 12 Мая 2014 в 09:51, курсовая работа
Измельчению способствует: улучшению однородности смесей (напр., производство СК); ускорению и повышению глубины протекания гетерогенных химических реакций (в производстве минеральных удобрений. ультрамарина и др.); повышению интенсивности сочетаемых с ним других технологических процессов (перемешивание, сушка. обжиг. хим. реакции); снижению применяемых температур и давлений (напр., при варке стекла); улучшению физико-механических свойств и структуры материалов и изделий (твердые сплавы. бетон. керамика. огнеупоры и т. п.); повышению красящей способности пигментов и красителей, активности адсорбентов и катализаторов. переработке полимерных композиций, включающих высокодисперсные наполнители (напр., сажу. слюду. хим. и иные волокна), отходов производства, бракованных и изношенных изделий (резиновые шины, термо- и реактопласты и др.) и т. д.
Введение
1 АСУ ТП процесса измельчения
2. Описание технологического процесса
2.2 Процесс измельчения
2.3 Конструкции вращающихся барабанных мельниц
3 Концептуальная модель
3.1 Функциональная структура проектируемой системы
3.2 Описание режимов функционирования объекта
3.3 Построение функциональной системы
4 Информационно-логическая модель
4.1 Операции управления, выполняемые с использованием БД
4.2 Проверка достоверности исходных данных
5. Заключение
6. Литература
К машинам без мелющих тел относятся: барабанные мельницы самоизмельчения (для грубого, среднего и тонкого помола); воздухо-, паро- и газоструйные (для тонкого и сверхтонкого помола); пневматические (для среднего и тонкого помола); кавитационные (для переработки суспензий); коллоидные, ультразвуковые, электрогидравлические и др. (преимущественно для тонкого и сверхтонкого помола).
В струйных противоточных мельницах Измельчение происходит за счет энергии потока компримированного газа, например, воздуха, или перегретого пара. Два встречных потока, несущих с большой скоростью исходный материал в виде мелких кусков, пройдя сопла, которые установлены в разгонных трубах, соударяются, и частицы измельчаются. Восходящие потоки увлекают материал в зону предварительной сепарации грубых фракций и далее в сепаратор, где отделяется тонкая готовая фракция, улавливаемая сначала в циклоне и окончательно в фильтре. Грубые фракции непрерывно возвращаются из сепаратора в размольную камеру. Основное достоинство - возможность диспергирования термолабильных материалов [кубовых красителей, (NH4)2SO4 и т. п.]; недостаток - необходимость установки дополнительного оборудования (компрессора, газогенератора, мощной пылеулавливающей системы). Такие машины предназначены для измельчения кокса, слюды, известняка, пластмасс, инсектицидов и др.; степень измельчения 20-120. Кавитационные мельницы (рис. 1) работают в системе с напорными баками, что обеспечивает многократную циркуляцию и высокую степень диспергирования материала.
Действуя как насос, мельница прокачивает диспергируемую суспензию через кольцевой зазор между ротором и статором, причем благодаря наличию на их поверхностях продольных канавок сечение прохода то возрастает, то уменьшается, что вызывает значительные колебания давления и, как следствие, кавитационный эффект. В результате суспензия интенсивно измельчается и по окончании цикла переработки отводится через специальный кран в нижней части машины. Основное достоинство - высокая гомогенность получаемых суспензий; недостатки: интенсивный износ рабочих органов, малая производительность. Эти измельчители применяют для приготовления резиновых смесей, в лакокрасочных и др. производствах; степень измельчения 5-40.
В так называемых коллоидных мельницах материал измельчается (до частиц размером несколько мкм и менее), многократно проходя через малый зазор между быстро вращающимся коническим диском (ротором) и неподвижным кольцом (статором) либо через зазор между пальцами ротора и корпусом машины. Из-за высокого износа рабочих поверхностей и малой производительности эти мельницы применяют в основном в лабораторной практике для помола небольших порций материала. В ультразвуковых мельницах помол происходит под действием высокочастотных звуковых колебаний (более 20 тыс. в 1 с). Сравнительно небольшая мощность современных генераторов ультразвука и высокий уровень шума ограничивают область использования таких мельниц; их применяют преим. для получения высокодисперсных (средний размер частиц - мкм и доли мкм) и однородных суспензий, например, в производствах красителей и лекарственных средств. В электрогидравлических измельчителях твердое тело подвергается высокоинтенсивному воздействию импульсных давлений, возникающих при высоковольтном разряде в жидкости; эти машины могут быть использованы как для тонкого помола, так и для дробления.
Выбор способа и технологической схемы измельчения, типоразмеров, материалов рабочих органов и режима работы измельчителей зависит от прочности. твердости, упругости, липкости, термостойкости, хим. активности, токсичности, склонности к загоранию и взрыву измельчаемых материалов, а также от гранулометрического состава, необходимой формы частиц, чистоты, белизны, насыпной массы, текучести и т. д. продукта измельчения.
Процессы измельчения связаны со значительным расходом энергии. Для выражения зависимости между затратами энергии и результатами измельчения, т. е. размерами кусков (зерен) продукта, предложен ряд теорий, гипотез и эмпирических соотношений, которые м. б. использованы, однако, лишь с целью качественного сопоставления измельчающих машин. Практически для выбора типов и размеров машин, а также расчета их производительности, продолжительности процесса и дисперсности продуктов экспериментально изучают в равных условиях кинетику Измельчение исследуемого и эталонного материалов и определяют так называемый коэффициент измельчаемости, который характеризует сопротивляемость материала Измельчение в конкретной машине. Далее выбирают тип измельчителя и с использованием соответствующих таблиц - параметры и режим его работы.
Повышению эффективности измельчения, наряду с совмещением его с классификацией и проведением процесса в несколько стадий, способствует рациональный выбор удельных энергетических затрат, механических усилий и частот их воздействия на материал, соотношений твердое: жидкое при мокром помоле и др. Для получения высокодисперсных продуктов из материалов, склонных к агрегированию, их подвергают сначала сухому, а затем мокрому помолу с добавками ПАВ. Последние препятствуют агрегированию мелких частиц и позволяют получать тонкие порошки с модифицированной (гидрофобизированной или гидрофилизированной) поверхностью. Одновременно ПАВ облегчают возникновение и развитие в измельчаемом материале пластических сдвигов и трещин, что снижает его сопротивляемость измельчению Перспективен также метод так называемого упругодеформационного измельчения, заключающийся в совместном воздействии на материал температуры, давления и деформации сдвига. С помощью этого метода на модифицированных экструзионных и вальцевальных машинах получают сверхтонкие порошки из вторичных полимерных материалов, например, изношенных резин (размер частиц до 60 мкм) или полиэтиленовой пленки (до 10 мкм).
Для поддержания заданных характеристик продуктов измельчения необходимо контролировать и корректировать параметры процесса (влажность, крупность, измельчаемость, другие свойства исходных материалов, производительность машин). Для этого мощные дробильные и помольные установки оснащают системами автоматического регулирования. С целью уменьшения износа оборудования при измельчении абразивных материалов ограничивают скорость движения рабочих органов, применяют быстросъемные узлы и детали, подвергаемые легкому изнашиванию, футеруют рабочие поверхности; в ряде случаев осуществляют совместную обработку абразивного и мягкого компонентов композиции, при которой первый способствует измельчению второго, а мягкий полирует твердый, снижая его абразивность. Для уменьшения износа машин при мокром измельчении в жидкость вводят ингибиторы коррозии.
При измельчении пожаро- и взрывоопасных материалов необходимо соблюдать правила техники безопасности. Установки и помещения для Измельчение необходимо проектировать и эксплуатировать с учетом нижних концентрационных пределов и температур воспламенения, а также способности исходных материалов к электризации и т. п. Должны быть обеспечены прочность и герметичность корпусов измельчителей и коммуникаций, установлены разрывные предохранительные мембраны. Для изготовления мелющих тел и корпусов измельчителей необходимо использовать материалы, исключающие возможность искрообразования при соударениях. Установки для измельчения следует заземлять и оснащать защитой от атмосферного и статического электричества, вместо пневматического транспорта применять механический с изготовлением его деталей (напр., ковшей элеватора) из цветных металлов. Электрооборудование должно быть во взрывобезопасном исполнении, а категория помещений выбрана в соответствии с санитарными нормами и правилами. Пылеулавливающие устройства (циклоны, фильтры) следует монтировать в отдельном помещении; анализ пылесодержания воздушной среды и мокрую очистку трактов, оборудования и помещений от осевшей пыли необходимо проводить строго по графику. Эффективны также замена сухого измельчения на мокрое, измельчение в среде азота, оснащение установок системами автоматического дистанционного контроля, управленияи сигнализации
1. АСУ ТП процесса измельчения
Измельчение и классификация минерального сырья являются основными подготовительными операциями перед его обогащением. Измельчение сырья производится в стержневых и шаровых мельницах, а также в мельницах мокрого измельчения. Мельница и классификатор могут работать последовательно, раздельно или в замкнутом цикле друг с другом.
Измельчение—процесс уменьшения крупности твердых частиц в результате различных физических воздействий. В отличие от дробления крупность измельченного продукта не превышает 5 мм. В практике обогащения полезных ископаемых измельчение применяется для раскрытия рудных зерен, имеющих размер от 5 мм до долей миллиметра.
Из всех технологических переделов горно-обогатительного комбината измельчение является наиболее энергоемким процессом.
Технологические и технико-экономические показатели работы фабрики во многом определяются процессом измельчения, на долю которого приходится около 15% общего объема информации, используемой при автоматическом контроле и управлении технологическим процессом переработки руды. При автоматизации процессов измельчения необходимо решать ряд задач:
1. Автоматический контроль состояния механизмов:
1.1 температуры подшипников механизмов и машин;
1.2 параметров системы маслосмазки;
1.3 состояния перегрузочных узлов отделения измельчения;
1.4 длительности работ и простоя технологических механизмов.
2. Автоматический контроль
технологических параметров
2.1 производительности цикла по исходной руде;
2.2 расхода воды, подаваемой в цикл измельчения;
2.3 гранулометрического состава продукта измельчения (слива классифицирующего аппарата);
2.4 заполненности барабана мельницы рудой;
2.5 загрузки мельницы дробящей средой;
2.6 уровня пульпы в зумпфах насосов гидроциклонов;
2.7 циркуляционных нагрузок цикла измельчения.
3. Автоматическое управление циклом измельчения:
3.1 Стабилизацией технологических параметров цикла;
3.2 Оптимизацией работы цикла.
Зачем нужна автоматизация процессов измельчения? С одной стороны, автоматизация данного процесса предназначена для поддержания требуемых режимов измельчения и классификации в условиях изменяющегося качества измельчаемого сырья и других условий измельчения (загрузки мелющих тел, водных режимов, циркуляционной нагрузки и прочее). С другой, автоматизация – снижение издержек производства и максимизация прибыли. Оба мнения справедливы, поэтому следует учитывать как мнение технологов, так и мнение инвесторов, поскольку они не противоречат, а взаимно дополняют друг друга.
Что мы имеем на сегодняшний день? Уровень автоматизации процессов измельчения сильно отличается на различных предприятиях: от практически нулевого уровня до достаточно развитых систем интеллектуальной оптимизации процесса. Наиболее типичные задачи автоматизации, решаемые посредством введения контуров стабилизации соответствующих технологических параметров в порядке уменьшения их распространенности:
1 стабилизация расхода руды в мельницу;
2 стабилизация соотношения «руда-вода» посредством подачи воды в мельницу;
3 стабилизация плотности слива классифицирующего аппарата (классификатора или гидроциклона) подачей дополнительной воды в классификатор или ЗУМПФ.
В 95% случаев автоматизация процессов измельчения этим и ограничивается.
В данной курсовой работе я попытаюсь создать АИС управления процессом измельчения воздействием на подачу исходной руды в цикл и расхода воды в мельницу.
Целью курсовой работы является обучение практическим приемам математического моделирования автоматизированных информационных систем.
Целью создания автоматизированной системы является повышение эффективности функционирования технологического комплекса за счет улучшения системы регулирования и контроля подачи исходной руды и расхода воды в мельницу.
Условием достижения поставленной цели является улучшение качества и оперативности обработки информации.
2. Описание технологического процесса
Руда качающимся питателем подается на ленточный конвейер. На ленточном конвейере перед подачей руды в мельницу установлены конвейерные весы для учета веса руды.
Процесс измельчения
Измельчение сырья производится в стержневых и шаровых мельницах, а также в мельницах мокрого измельчения.
Применяемые для измельчения различных материалов барабанные мельницы различаются по форме барабана, характеру среды и измельчающих тел, по способу разгрузки измельченного продукта и по принципу действия. На современных обогатительных фабриках применяются преимущественно мельницы с барабанами цилиндрической формы различной длины. Трубная мельница является разновидностью цилиндрической и отличается удлиненной формой барабана. В зависимости от характера среды барабанные мельницы бывают для сухого и для мокрого измельчения. В качестве измельчающих тел для барабанных мельниц применяются стальные шары и стержни, керамические шары, природная галька и крупные куски руды. По способу разгрузки измельченного продукта барабанные мельницы бывают с разгрузкой через решетку, с периферической разгрузкой и с центральной разгрузкой через полую цапфу. По принципу действия барабанные мельницы бывают вращающиеся, вибрационные и центробежные. Степень измельчения, так же как и степень дробления, определяется отношением максимального размера зерен исходного продукта к максимальному размеру зерен (измельченного продукта).
Конструкции вращающихся барабанных мельниц
Шаровая мельница с разгрузкой через решетку МШР (рис. 1) состоит из барабана, коренных подшипников 2 и 3, и питателя 4. Барабан состоит из загрузочной, разгрузочной и средней частей. Загрузочная часть представляет торцовую крышку 5, отлитую вместе с цапфой. В цапфе установлен загрузочный патрубок 6, внутри которого предусмотрены винтовые направляющие для подачи материала из питателя внутрь барабана. Одновременно патрубок служит для защиты внутренней поверхности цапфы от износа. Средняя часть мельницы представляет барабан, к которому болтами крепятся торцовые крышки. Внутри барабан футеруется бронеплитами 7, которые крепятся на болтах 8. Разгрузочная часть включает торцовую крышку 9 с цапфой 10, разгрузочную решетку, лифтеры 12, внутри цапфы устанавливается разгрузочная воронка 13. Барабан, устанавливаемый в подшипниках 2 и 3, получает вращение от электродвигателя через зубчатый венец 14.
Информация о работе Автоматизация процессов измельчение твердых материалов