Автор работы: Пользователь скрыл имя, 02 Июля 2013 в 21:47, реферат
В связи с увеличением частоты природных катаклизмов, а именно землетрясений возникла проблема сейсмоустойчивости зданий и сооружений, построенных без учета сейсмических воздействий, что в случае данных природных катастроф наносит материальный ущерб. Принимая во внимание всё это в районах подверженных сейсмическим воздействиям силой 7 и более баллов, возникла необходимость возведения зданий и сооружений, способных выдерживать сейсмические воздействия.
Введение
1. Особенности строительства в зонах с сейсмической опасностью
2. Компоновка конструктивного решения здания
3. Определение сейсмичности строительной площадки и сбор нагрузок
3.1 Сбор нагрузок
3.2 Расчет каркаса в поперечном направлении
4. Расчет каркаса в продольном направлении
5. Определение сейсмических нагрузок с учетом кручения здания в плане
6. Антисейсмические мероприятия
Литература
3.2 Расчет каркаса в поперечном направлении
Для определения периода собственных колебаний и форм колебаний необходимо вычислить динамические характеристики одноэтажной рамы поперечника здания.
Предварительно
принимаем сечение колонны
гибкость двутавра N50
гибкость двутавра N40
Принимаем колонны сечением: i=20,3 см, А =143см2, Двутавр: . Жесткость одной колонны:
Жесткость сечения самонесущей стены (или ее элемента) определяется без учета трещин и принимается равной 0,8E0Ic,
Перемещение колонн:
Жесткость каркаса здания:
Жесткость рамы здания:
Рис.3-Продольный разрез здания со стальным каркасом и его расчетная схема
Определим вертикальную нагрузку от собственного веса конструкций и снега.
Q = 4903 кН. Вертикальную
нагрузку принимаем
Определяем коэффициент динамичности для каркаса здания:
Для грунтов III категории т.к при
Устанавливаем следующие значения:
Каркасные здания, стеновое заполнение которых оказывает влияния на их деформативность
Определяем расчетные величины сейсмических нагрузок, действующих на поперечные рамы каркаса:
- значение сейсмической
а) в уровне верха колонн рамы, с учётом коэффициента 1,2 :
тогда расчётная сейсмическая нагрузка равна:
При сейсмичности площадки 8 баллов и более при грунтах III категории к значению Sik вводится множитель 0,7, учитывающий нелинейное деформирование грунтов при сейсмических воздействиях.( СНиП II-7)
При совместной работе каркаса сейсмическая нагрузка на раму равна :
При отдельной работе каждой нагрузка равна:
.
Так как мы рассматриваем отдельную раму, то коэффициент :
б) по длине колонны - от собственного
веса колонны, с учётом коэффициента
1,2 :
в) по длине крайних колонн - от участков
продольных стен, расположенных в
пределах высоты колонн, с учётом коэффициента
1,2 :
на рамы по оси 1 и 11:
на рамы по оси 2 - 10 :
г) в уровне расположения опорных
консолей навесных участков торцевой
стены, от собственного веса участка
торцевой стены:
опорные консоли на отметке 1,2 м:
опорные консоли на отметке 3,6 м:
4. Расчет каркаса в продольном
направлении
Определим жесткость связевых панелей на уровне верха колонн без учета продольных деформаций колонн и распорок (в запас прочности):
Для определения периода
Жесткость одной колонны:
Жесткость сечения самонесущей стены (или ее элемента) определяется без учета трещин и принимается равной 0,8E0Ic:
Перемещение отдельной колонны:
Жесткость каркаса здания на уровне верха колонн C определяется по формуле п - число колонн (или рам) в каркасе здания (отсека);
δkk - перемещение отдельной колонны (или рамы) на уровне ее верха от действия горизонтальной единичной силы, приложенной в том же уровне.
Жесткость каркаса здания:
Определим вертикальную нагрузку от собственного веса конструкций и снега. Q = 4903 кН.. Вертикальную нагрузку принимаем сосредоточенной в уровне верха колонн.
На одну раму приходится нагрузка :
Определяем период собственных колебаний
каркаса в поперечном направлении
здания:
Определяем коэффициент
β – коэффициент динамичности, соответствующий i-му тону собственных колебаний здания или сооружения, принимаемый согласно п. 2.6 : Для грунтов II категории по сейсмическим свойствам
При 0,1е<Т<0,4е ;
а) в уровне верха колонн рамы, с учётом коэффициента 1,2 :
тогда расчётная сейсмическая нагрузка
равна:
При сейсмичности площадки 8 баллов и
более при грунтах III категории
к значению Sik вводится множитель 0,7, учитывающий нелинейное
деформирование грунтов при сейсмических
воздействиях.( СНиП II-7-81 Строительство
в сейсмических районах. М., 2000)
Так как мы рассматриваем отдельную раму, то коэффициент :
б) по длине колонны - от собственного веса колонны, с учётом коэффициента 1,2 :
5. Определение сейсмических нагрузок с учетом кручения здания в плане
Рис.4-Поворот здания в плане
1– Центр масс;
2 – Центр жесткостей.
Значение расчетного эксцентриситета
между центрами жесткостей и веса здания
принимаем равным 0,1В, где В- размер здания
в плане в направлении, перпендикулярном
действию силы
При расчете здания в поперечном направлении
В=60м;
=0,1∙60=6 м; Вычислим угловую жесткость
здания:
Определим полную сейсмическую нагрузку на раму каркаса с учетом поворота здания в плане:
рама по оси 1
рама по оси 2
рама по оси 3
рама по оси 4
рама по оси 5
рама по оси 6
рама по оси 7
рама по оси 8
рама по оси 9
рама по оси 10
6. Антисейсмические мероприятия
В целях обеспечения пространственной жесткости каркаса, устойчивости покрытия в целом и его элементов в отдельности необходимо предусматривать систему связей между несущими стальными конструкциями покрытий (ферм) в плоскости их верхних и нижних поясов и в вертикальных плоскостях.
Горизонтальные антисейсмические швы в стенах должны устраиваться на уровнях расположения опорных и стыковых ригелей каркаса стен и верха цокольной части стен.
Вертикальные антисейсмические швы в местах пересечения стен осуществляют путём изготовления специальных Г-образных трехслойных панелей, в которых в месте антисейсмического шва из металлических облицовочных листов выполняются компенсатор, а жесткий утеплитель заменяется на эластичный.
В зданиях со
стальным каркасом с высотами большими,
чем предусмотрено
В целях обеспечения пространственной жесткости каркаса, а также устойчивости покрытия в целом и его элементов в отдельности необходимо предусматривать систему связей между несущими стальными конструкциями покрытия (фермами) в плоскости их верхних и нижних поясов и в вертикальных плоскостях.
В покрытиях из стального профилированного настила система связей в плоскости верхних поясов стропильных стальных ферм состоит из поперечных связевых ферм и распорок, роль которых выполняют прогоны. Связевые поперечные фермы устанавливаются в двух крайних (у торцов и антисейсмических швов здания). Независимо от расчета в зданиях (отсеках) со стропильными фермами с параллельными поясами с расчетной сейсмичностью 8 и 9 баллов длиной свыше 60 м и 7 баллов длиной свыше 96 м следует устанавливать не менее одной промежуточной связевой фермы, а в зданиях (отсеках) со стропильными фермами треугольного очертания с расчетной сейсмичностью 9 баллов длиной 60 м и более рекомендуется устанавливать не менее одной промежуточной связевой фермы.
Промежуточные связевые фермы должны располагаться по длине здания (отсека) равномерно
Список литературы
1. СНКК 22-301-2000. “Строительство
в сейсмических районах
2. СНКК 20-303-2002. “Нагрузки и воздействия. Ветровая и снеговая нагрузки. Краснодарский край”
3. СНиП 2.01.07-85*. “Нагрузки и воздействия” Госстрой М., 1985.
4. СНКК 23-302-2000. Энергетическая
эффективность жилых и
5. СНиП 2.02.01-83*. Основания зданий и сооружений. М., 1982.
6. СНиП II-7-81*. Строительство в сейсмических районах. М., 2000.
Информация о работе Проектирование одноэтажного каркасного здания из лёгких конструкций