Проектирование одноэтажного каркасного здания из лёгких конструкций

Автор работы: Пользователь скрыл имя, 02 Июля 2013 в 21:47, реферат

Краткое описание

В связи с увеличением частоты природных катаклизмов, а именно землетрясений возникла проблема сейсмоустойчивости зданий и сооружений, построенных без учета сейсмических воздействий, что в случае данных природных катастроф наносит материальный ущерб. Принимая во внимание всё это в районах подверженных сейсмическим воздействиям силой 7 и более баллов, возникла необходимость возведения зданий и сооружений, способных выдерживать сейсмические воздействия.

Содержание

Введение
1. Особенности строительства в зонах с сейсмической опасностью
2. Компоновка конструктивного решения здания
3. Определение сейсмичности строительной площадки и сбор нагрузок
3.1 Сбор нагрузок
3.2 Расчет каркаса в поперечном направлении
4. Расчет каркаса в продольном направлении
5. Определение сейсмических нагрузок с учетом кручения здания в плане
6. Антисейсмические мероприятия
Литература

Прикрепленные файлы: 1 файл

Жив.doc

— 361.50 Кб (Скачать документ)

 

 

Министерство  образования и науки РФ

 

 «Владимирский  государственный университет

имени Александра Григорьевича и Николая Григорьевича Столетовых»

РЕФЕРАТ

на тему: Проектирование одноэтажного каркасного здания из лёгких конструкций

 

          по дисциплине «Методы решения научно-технических задач »

 

 

 

 

Выполнил:

.

Принял:

 

 

.

 

 

 

Владимир 2012

Содержание

 

Введение

1. Особенности  строительства в зонах с сейсмической  опасностью

2. Компоновка конструктивного решения здания

3. Определение сейсмичности строительной площадки и сбор нагрузок

3.1 Сбор нагрузок

3.2 Расчет каркаса в поперечном направлении

4. Расчет каркаса в продольном направлении

5. Определение сейсмических нагрузок с учетом кручения здания в плане

6. Антисейсмические мероприятия

Литература

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

В связи с  увеличением частоты природных  катаклизмов, а именно землетрясений  возникла проблема сейсмоустойчивости зданий и сооружений, построенных  без учета сейсмических воздействий, что в случае данных природных катастроф наносит материальный ущерб. Принимая во внимание всё это в районах подверженных сейсмическим воздействиям силой 7 и более баллов, возникла необходимость возведения зданий и сооружений, способных выдерживать сейсмические воздействия.

При разработке проектов зданий и сооружений выбор конструктивных решений производят исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, достигаемых за счет внедрения эффективных строительных материалов и конструкций, снижения массы конструкций и т.п. Принятые конструктивные схемы должны обеспечивать необходимую прочность, устойчивость; элементы сборных конструкций должны отвечать условиям механизированного изготовления на специальных предприятиях.

При проектировании гражданских зданий необходимо стремиться к наиболее простой форме в  плане и избегать перепадов высот. При проектировании часто выбирают объемно-планировочные и конструктивные решения, так как они обеспечивают максимальную унификацию и сокращение числа типоразмеров и марок конструкций.

 

1. Особенности  строительства в зонах с сейсмической  опасностью

Во многих районах  земного шара происходят землетрясения, большинство из которых имеют небольшую интенсивность или случаются в малонаселенных районах. Однако имеется немало землетрясений в результате которых разрушались города и населенные пункты. Сильные землетрясения за последние годы произошли в  Скопле, 1963; Биигате,1964; Каракасе, 1967; Перу,1970; Сан-Фернандо,I97I; Никарагуа, 1972; Гватемале, 1976; Румынии, 1977. К сожалению, пршлеры таких землетрясений могут быть приведены и для нашей страны. Значительный ущерб нанесли Крыкюкое,1927; Кишиневское,1940; Ашхабадское, 1948; Ташкентское, 1966; Джаглбульское, I97I; Газлийское,.1976; Назарбекское, 1980 землетрясения.

Наиболее полные данные по последствиях сильных землетрясений  содержатся в работе профессора В. Полякова /115/, где приводятся сведения об огромном ущербе, который наносят человечеству эти стихийные бедствия, занимающие второе место среди других природных катастроф. За период 1947-70 гг. во время землетрясений погибло более 190 тыс.человек. В /64/ приведены данные о последствиях землетрясений в США., где за период I905-I965 г.г. погибло около 1,4 млн, человек, а материальные убытки исчислялись 1200 млн. долларов. Только от землетрясения I97I г. в Сан-Фернандо убытки составили около 500 млн.долларов. Землетрясение 1906 г. в Сан-Франциско нанесло ущерб в 480 млн.долларов, а при таком же землетрясении в настоящее время убытки составили бы несколько миллиардов долларов, не считая цепной реакции возможных последствий для экономишь США. Рост населения, быстрое развитие промышленности требуют освоения все новых территорий, в том числе и в сейсмически активных районах, поэтому вопрос надежности и экономичности антисейсмического строительства имеет большое народнохозяйственное значение.

Анализ распределения  территории и населения СССР по районам  с различной сейсмичностью показал, что общая площадь сейсмических районов СССР составляет около 22% всей территории страны. В этих районах расположены девять столиц союзных республик, сотни городов и тысячи сельских населенных пунктов, ведется около ЭД жилищного строительства.

Все возрастающие объекты капитального строительства, увеличение численности и улучшение условий проживания населения, массовое жилищное строительство в крупных городах с неблагоприятным инженерно-геологическими условиями с крайне ограниченными возможностями расширения территории предъявляют высокие требования к надежности и экономичности зданий и сооружений, строящихся в районах высокой сейсмичности. Поэтому перед теорией сейсмостойкости сооружений на современном этапе ставятся новые более сложные задачи, обязанные с необходимостью учета запасов прочности конструкций в предельной стадии работы при интенсивных сейсмических нагрузках, переходу к пространственным расчетным схемам, более полно отражающим реальные свойства зданий и сооружений, использования новых сейсмологических данных, характеризующих долговременную сейсмическую опасность территории, подверженной сейсмическим воздействиям.

Как свидетельствует  опыт прошедших землетрясений, здания и сооружения, рассчитанные, запроектированные  и построенные с учетом требований норм по сейсмостойкому строительству, вполне удовлетворительно выполняют свое назначение. В этом большая заслуга советских ученых, с трудами которых связано становление и развитие, теории сейсмостойкости.

В соответствии с действующим  СНиПом здания и сооружения, строящиеся в сейсмически активных районах, должны быть рассчитаны и запроектированы на восприятие расчетных сейсмических нагрузок. При этом расчет ведется по упругой стадии на некоторое осредненное воздействие, интенсивность которого зависит от балльности района строительства и характеризуется коэффициентом сейсмичности, по физическому смыслу представляющего собой среднее значение ускорений в долях Q. Поэтому можно предположить, что сооружение, запроектированное по действующим нормам, при расчетном землетрясении должно работать в упругой стадии без каких-либо повреждений несущих элементов и конструкций. Как показывает опыт прошедших землетрясений, здания рассчитанные и построенные - 9*) в соответствии с действующими нормами, вполне удовлетворительно переносят сейсмические воздействия. Однако землетрясения расчетной интенсивности не проходят бесследно: даже в сейсмостойких сооружениях наблюдаются повреждения, в том числе и несущих конструкций. Этому довольно много причин (конструктивные особенности конкретного объекта, прочность материалов, конструкций, качество строительства и многие другие). Однако основной причиной почти всегда является особенность самого сейсмического процесса и прежде всего его интенсивность. Как показывают инструментальные данные, фактическая интенсивность расчетных землетрясений, как правило, оказывается значительно больше расчетных значений Кс.

Этот факт в последнее  время становится общепринятым и  поэтому в новых нормах по сейсмостойкому строительству в несколько раз  повышена величина коэффициента, К^. Так, к 9 балльным землетрясениям (при расчетах по акселерограммам) относятся та, максимальная амплитуда ускорений которых превышает 400 см/сек.

Учитывая изложенное, следует признать, что при расчетных  землетрясениях в зданиях неизбежны  повреждения отдельных узлов и элементов конструкций. В работе /74/ отмечается, что даже землетрясения средней интенсивности вызывают существенные перенапряжения в конструкциях зданий, запроектированных в соответствии с требованиями сейсмических норм США, и поэтому в сейсмостойких сооружениях следует ожидать повреждений при землетрясениях, интенсивность которых даже ниже расчетных. Такая же мысль поддерживается крупными советскими исследователями,которые считают, что в настоящее время дальнейшего развития требуют исследования на сейсмические воздействия расчетной интенсивности, когда сооружение работает в предельной стадии, в которой должны быть учтены и использованы все запасы несущей способности конструкций. • В последнее время получает распространение концепция двойно- го расчета, впервые выдвинутая в работах крупнейших советских ученых в области сейсмостойкости сооружений И.И. Гольденблата и В.Полякова, Сущность ее заключается в том, что здание должно быть рассчитано на землетрясения разной интенсивности. При слабых и умеренных землетрясениях, повторяемость которых соизмерима со сроком службы сооружения, оно должно быть запроектировано таким образом, чтобы затраты, связанные с восстановительным ремонтом, были минимальными. Это значит, что здания рассчитываются по упругой стадии. При землетрясениях расчетной интенсивности, периоды, повторения которых для большинства сейсмически активных районов нашей страны составляют 1000 и более лет, расчет ведется по новому предельному состоянию. Учитывая малую вероятность таких землетрясений за срок службы сооружения экономически неоправданно строить здания, которые переносили бы сильные землетрясения без всяких повреждений. Главное требование, предъявляемое в этих условиях к сооружению - обеспечение безопасности населения и сохранности ценного оборудования. Поэтому критерии предельного состояния назначаются из этих основных требований: в зданиях допускаются любые деформации, повреждения отдельных элементов и узлов, однако обрушение несущих конструкций и объекта в целом должно быть безусловно предотвращено. При сильных землетрясениях поведение сооружений характеризуется возникновением и развитием зон и участков повреждений отдельных элементов и узлов конструкций, что приводит к изменению основных динамических параметров системы (жесткостных и диссипативных характеристик, частот и колебаний). Другими словами параметры системы "на выходе", то есть конечное состояние сооружения, перенесшего землетрясение (оценка которого, по-существу, и является в большинстве случаев целью расчета) зависит не только от параметров системы "на входе", но и от особенностей внешнего воздействия (акселерограммы) и характера изменения параметров расчетной модели в процессе землетрясения. Таким образом для всесторонней оценки поведение зданий в условиях реальных землетрясений необходимо рассмотрение сооружения как нестационарной модели, работающей в существенно нелинейной области, при воздействии акселерограм реальных землетрясений.

Недаром задачи теории сейсмостойкости  относятся, по мнению профессора И.И. Гольденблата, к одним из наиболее слoжныx современных инженерных задач

в последнее время  советскими сейсмологами получены весьма ценные результаты по оценкам долговременной сейсмической опасности различных  сейсмологических регионов нашей страны, включая сведения о сейсмической сотрясаемости, а для отдельных районов получены вероятные оценки спектральной сейсмологической сотрясаемости, по которым можно дифференцировать долговременную сейсмическую опасность отдельных классов сооружений.

Одними из важных в  настоящее время, становятся экономические критерии, на основе которых может быть выбрана такая степень антисейсмического усиления, которая обеспечивает, с одной стороны, заданный уровень надежности сооружения, а с другой, - минимальную величину расходов, связанных с ликвидацией последствий землетрясения. При этом oдним из основных являются вопросы определения объемов повреждений несущих конструкций зданий в условиях возможных землетрясений, решение которых самым непосредственным образом связано с необходимостью исследования сооружений в условиях реальных землетрясений с учетом действительной работы в стадии, близкой к предельной.

 

2. Компоновка конструктивного решения здания

 

Здание имеет  полный металлокаркас;

Здание проектируется  каркасное.

Размеры здания в плане 24х60м;

Сетка колонн 24х6м;

Фундаменты –  отдельные железобетонные

Покрытие –  стальной проф лист, утеплитель, трехслойные  панели покрытия;

Несущие конструкции  покрытия стальные фермы пролетом 24 м;

Стальные прогоны  при шаге ферм 6м-швелер №16

Ограждающие трехслойные панели покрытия опираются на стальные прогоны с шагом 3м;

Сечение стальных колонн двутавр  №50

По периметру здания цокольная  стеновая панель из керамзитобетона  толщиной 300мм и высотой 1,2м,опирающаяся  на фундаментную балку;

между поверхностями стен и конструкциями каркаса должен предусматриваться зазор не менее 20 мм;

В межферменном пространстве покрытия размещают различные  трубопроводы, осветительную арматуру и др. По продольным стенам предусмотрено  ленточное остекление от отметки +1,2 до +3,6 метра. Торцевые стены без остекления.

 

3. Определение сейсмичности строительной площадки и сбор нагрузок

 

Требуется рассчитать конструкции здания, при его привязке к площадке строительства.

Согласно СНиП II-7-81* (Строительство в сейсмических районах) в разделе Общее сейсмическое районирование территории Российской Федерации ОСР-97” (Список населенных пунктов) по карте ОСР-97-В-5% сейсмичность района ст. составляет 8 баллов (Карта В - объекты повышенной ответственности и особо ответственные объекты. Решение о выборе карты при проектировании конкретного объекта принимается заказчиком по представлению генерального проектировщика, за исключением случаев, оговоренных в других нормативных документах).

Определение сейсмичности площадки строительства производим на основании сейсмического микрорайонирования для III категории групп по сейсмическим свойствам. Сейсмичность площадки строительства при сейсмичности района 8 баллов, составляет 9 баллов.

 

Рис.1- План здания

Рис.2-Поперечный разрез здания

 

3.1 Сбор нагрузок

 

Сбор нагрузок производим на 1 мпокрытия здания.

Сбор нагрузок производим в табличной форме и представлен в таблице 2.1.

 

Таблица 1- Нагрузка на 1м2 покрытия

Вид нагрузки

Нормативная нагрузка, Н/м2

Коэффициент надёжности по нагрузке

Коэффициент сочетания

Вычисление

Расчётная нагрузка, Н/м2

снеговая

0,9

1,4

0,5

0,9*1,4*0,5*24*60

907,2

кровли

0,75

1,2

0,9

0,75*1,2*0,9*24*60

1166,4

профилированного настила

0,15

1,05

0,9

0,15*1,05*0,9*24*60

204,12

прогонов

0,1

1,05

0,9

0,1*1,05*0,9*24*60

136,08

утеплитель

0,1

1,2

0,9

24*60*0,1*1,2*0,9

155,52

конструкции покрытия

0,4

1,05

0,9

0,4*1,05*0,9*24*60

544,32

От участков стен выше верха колонн

2,65

1,1

0,9

2,65*1,1*0,9*2,1*(24+60)*2

925,57

От ј веса

       

4039,21

колонн

11,34

1,05

0,9

0,25*11,34*1,05*0,9*22

58,93

фахверковых стоек

9,4

1,05

0,9

0,25*0,4*1,05*0,9*6

0,58

связей между колоннами

0,04

1,05

0,9

0,25*0,04*24*60*1,05*0,9

13,61

Участков стен расположенных  в пределах высоты колонн

2,65

1,1

0,9

0,25*(2,65*(1,8+0,8)*(24+60)*2+2,4*24*2*2,65+2,4*60*2*0,35)*0,9*1,1

790,26

Итого

       

4903,32

Информация о работе Проектирование одноэтажного каркасного здания из лёгких конструкций