Основные сведения и свойства шлакопортландцемента

Автор работы: Пользователь скрыл имя, 14 Января 2014 в 17:07, реферат

Краткое описание

Шлакопортландцемент — гидравлическое вяжущее вещество, получаемое в результате совместного тонкого помола гранулированного доменного шлака, портландцементного клинкера и гипса или смешения в сухом виде тех же раздельно измельченных составляющих материалов. Количество гранулированного доменного, шлака должно быть в пределах 30-60% от массы цемента, а гипса - не более 5%. Для изготовления этого цемента можно применять основные и кислые доменные шлаки. Производство шлакопортландцемента и ряд его свойств аналогичны производству и свойствам пуццоланового портландцемента.

Прикрепленные файлы: 1 файл

ФОрмат.doc

— 375.50 Кб (Скачать документ)

 

 

 

Таблица 2 - Химико-минералогический состав

 

Избранные показатели

Согласно нормам

Усредненные показатели завода по производству ШПЦ

СаО

-

56

SiO

-

26,5

Al

O

-

5,5

Fe

O

-

3,5

MgO

-

2,4

SO

-

3

Потери при  прокаливании

-

2,8

Нерастворимый остаток

-

2

Na

O + K
O

-

0,45

C

A в клинкере

8

6

MgO в клинкере

5

2,5


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Технологическая  схема процесса

 

По ГОСТ доменного  шлака в этом цементе должно быть не меньше 21% и не больше 60% массы  цемента; часть шлака можно заменить активной минеральной добавкой (трепелом) (не более 10% массы цемента), что способствует улучшению технических свойств вяжущего. В шлакопортландцементе, предназначаемом для применения в массивных гидротехнических сооружениях, предельное содержание шлака не регламентируется и устанавливается по соглашению сторон. Разновидностями шлакопортландцемента являются: нормальный, быстротвердеющий и сульфагостойкий. Технология производства шлакопортландцемента отличается тем, что гранулированный доменный шлак подвергается сушке при температурах, исключающих возможность его рекристаллизации, и в высушенном виде подается в цементные мельницы. При помоле шлакопортландцемента производительность многокамерных трубных мельниц понижается, что объясняется, по-видимому, низкой средней плотностью шлака, ограничивающей возможность достаточного заполнения по массе объема мельниц. Иные результаты получаются при применении кислых шлаков как мокрой, так и в особенности полусухой грануляции. При совместном помоле с клинкером эти шлаки, хотя они и в значительной степени остеклованы, не сосредотачиваются в тончайших фракциях цементного порошка. Наличие крупных зерен шлака в составе шлакопортландцемента несколько замедляет процесс твердения.

Для получения  каждого компонента с наиболее приемлемой для него тонкостью помола следует размалывать клинкер и шлак раздельно. В зависимости от сравнительной сопротивляемости клинкера и шлака измельчению принимают две схемы помола. По первой клинкер предварительно измельчают сначала в первой мельнице, а затем уже во второй совместно со шлаком. Такая схема рекомендована Южгипроцементом для получения быстротвердеющего шлакопортландцемента. Она рациональна при более низкой размалываемости шлака, чем клинкера. В этом случае достигается особо тонкий помол клинкера, что ускоряет твердение шлакопортландцемента.

Вторая схема  предусматривает обычный совместный помол шлака и клинкера при  примерно одинаковой их размалываемости. В этом случае измалываемые компоненты еще дополнительно истирают друг друга.

Высокая тонкость помола - развитая удельная поверхность - особенно важна для клинкерной части цемента. При этом также проявляется физико-химическая потенциальная активность шлака. Увеличение удельной поверхности шлакопортландцемента до 3200-3000см /г позволяет повысить его прочность примерно до прочности чистого портландцемента с удельной  поверхностью - 3000см г.

Клинкер для шлакопортландцемента должен иметь такой минералогический состав и структуру, чтобы были обеспечены твердение и высокая прочность «клинкерной части» в составе шлакопортландцемента. Целесообразно, чтобы по физико-химической характеристике он приближался бы к клинкерам высокопрочных быстротвердеющих портлапдцементов. Гипс ускоряет схватывание шлакопортландцемента, однако дозировку его нужно устанавливать экспериментально. Содержание шлака и других активных добавок в составе цемента составило в 1980 г. в среднем по промышленности 21,7%. Наиболее быстрое твердение происходит при 30-40% шлака. По ГОСТ к шлакопортландцементу предъявляются такие же требования по тонкости помола, срокам схватывания, равномерности изменения объема, содержанию SO и MgO в клинкере как и к портландцементу. По прочностным показателям он разделяется на марки 300, 400 и 500. Отличительной его особенностью является повышенная прочность на растяжение и изгиб. В отличие от пуццолановых портлапдцементов шлакопортландцемент не вызывает повышения водопотребности растворов и бетонных смесей. При несколько замедленном росте прочности в первый после затворения период он интенсивно наращивает ее в последующем. За срок от семи суток до одного года прочность у портландцемента увеличивается примерно вдвое, а у шлакопортландцемента - в нормальных температурно-влажностных условиях возрастает значительно больше - примерно в 2,5 раза.

Твердение шлакопортландцемента обусловливается более сложными процессами, чем портландцемента из-за шлака. Происходит гидратация клинкерной части цемента, в результате чего в твердеющей системе образуется насыщенный известковый раствор, который образуется также и при разложении сернистого кальция.

Весьма важна  концентрация в растворе как ионов Са +, так и гидроксильных ОН-; существенная роль последних заметна по интенсивной гидратации шлака при воздействии щелочных растворов натрия или калия; в растворе имеется также некоторое количество ионов SO .

В результате создается  среда, способная вызвать щелочное и сульфатное возбуждение зерен  шлака, поверхностные слои которых вовлекаются в результате этого в процессы гидратации и образования цементирующих соединений. Контактируя в полостях и микротрещинах с поверхностными слоями шлакового стекла, известковый раствор способствует переводу в раствор находящихся на поверхности шлаковых зерен катионов вследствие разрыва кремнекислородных связей. В результате при взаимодействии с известью образуются гидросиликаты кальция, вначале, более основные, а по мере снижения концентрации извести в реагирующей среде - уже низкоосновные серии  СSН (В).

Исследования  процессов твердения известковошлаковых смесей и шлакопорт-ландцементов показали, что происходит химическое связывание шлаком СаО.

В процессе твердения  шлакопортландцемента образуется гидросульфоалюминат  кальция; после израсходования всего гипса при достаточно высокой концентрации извести возможно образование гидроалюминатов кальция. Не исключена возможность появления гидрогеленита - С АSН .

Шлакопортландцемент в отличие от портландцемента не проявляет тенденции к снижению прочности при твердении в результате обычно возникающих внутренних напряжений. Количество связанной воды при твердении шлакопортландцемента зависит преимущественно от активности и соответствует степени гидратации клинкерной части шлакопортландцемента в особенности при кислых шлаках. Содержание шлака в шлакопортландцементе уменьшает контракцию, причем через сутки это уменьшение пропорционально содержанию шлака в цементе. При одинаковом соотношении шлака и клинкера контракция к 30 суткам больше у шлакопортландцемента на основных шлаках. Контракция шлакопортландцемента на кислых шлаках зависит, главным образом, от химико-минералогического состава клинкера.

Усадочные деформации у шлакопортландцемента в растворе 1:3 с нормальным песком к 4 месяцам твердения на воздухе достигают 0,6-0,76 мм/м при содержании в цементе 50% кислых доменных шлаков либо 70% основных доменных шлаков. У взятого для сравнения пуццоланового портландцемента усадка составила 1,15 мм/м. Причина усадки в условиях воздушного твердения — в основном удаление свободной воды; у шлакопортландцементов с небольшой добавкой шлака, ниже 50%, усадка зависит преимущественно от минералогического состава клинкера. Тепловыделение при гидратации шлакопортландцемента значительно ниже, чем у портландцемента. Это препятствует его использованию в зимних условиях, но положительно сказывается при изготовлении массивного бетона. Для нормального твердения шлакопортландцемента необходима температура не ниже 288 К, при более низких бетонную смесь необходимо подогревать.

Исследовалась стойкость шлакопортландцементов с кислыми и основными шлаками по отношению к выщелачиванию методом фильтрации дистиллированной воды. Опыты показали, что введение в цементы как кислых, так и основных шлаков повышает их стойкость по отношению к действию мягкой воды. Это характеризуется уменьшением абсолютного количества выщелоченной из шлакопортландцемента извести, а также меньшей потерей прочности по сравнению с портландцементом и пуццолановым портландцементом. Твердые зерна шлака, довольно медленно гидратирующиеся, создают дополнительный жесткий каркас, который сохраняется и после выщелачивания части извести из клинкерной составляющей шлакопортландцемента.

Шлакопортландцементы  обладают достаточной морозостойкостью, которую можно повысить путем введения поверхностно-активных воздухововлекающих и других добавок, уменьшения В/Ц и созданием условий для предварительного твердения примерно до 3 мес. до начала морозов. Последнее особенно важно для шлакопортландцементов на базе кислых шлаков, содержащих больше «слабо связанной» воды и вследствие этого менее морозостойких, чем шлакопортландцементы на основных шлаках. Сравнительно высока морозостойкость цемента при содержании 60-80% шлака. Для водонепроницаемости существенное значение имеет как вид использованного для получения цемента шлака, так и его дисперсность. Из шлакопортландцемента можно получить водонепроницаемые бетоны при высокой удельной поверхности цемента, а также при добавке 10% другой активной минеральной добавки. Для повышения активности шлакопортландцементов применяется мокрый помол шлаков и последующее смешение шлакового шлама в бетономешалке с портландцементом. Такой метод был применен на строительстве плотины во Франции и дал весьма положительные результаты. Было установлено, что выделение тепла при твердении шлакопортландцемента понизилось, что особенно ценно для массивного бетона.

Положительной особенностью шлакопортландцементов, в отличие от пуццолановых, является сравнительная воздухостойкость, обеспечивающая нормальное твердение бетона (железобетона) наземных сооружений. Это не исключает необходимости тщательного ухода за бетоном для защиты его от высыхания и пониженных температур в первые сроки твердения. Шлакопортландцемент обладает повышенной стойкостью против действия минерализованных вод (морской, сульфатной и др.). Однако по отношению к концентрированным растворам магнезиальных солей он недостаточно стоек. Свободные кислоты, содержащиеся в болотных, сточных промышленных и других водах разрушают бетон из шлакопортландцемента.

Шлакопортландцемент не оказывает корродирующего действия на заложенную в бетон стальную арматуру и достаточно прочно сцепляется с  ней. Поэтому его можно применять  в железобетонных конструкциях наравне  с портландцементом. В отличие от портландцемента шлакопортландцемент в растворах и бетонах лучше сопротивляется действию повышенных температур, поэтому его можно применять после необходимого предварительного твердения во влажных условиях для некоторых строительных конструкций, эксплуатируемых в горячих цехах.

Особенно хорошо влияет на твердение шлакопортландцемента тепло-влажностная обработка. Исследования показали, что пропаривание так интенсивно ускоряет процессы гидратации, кристаллизации и уплотнения структуры шлакопортландцемента, что получаемые растворы и бетоны приобретают высокие строительные свойства. Коэффициент использования активности цемента при пропаривапии достигает 70% против 60% для портландцемента; повышается трещиностойкость, морозостойкость, водонепроницаемость, водо- и солестойкость и улучшается ряд других свойств. Для получения шлакопортландцемента, предназначаемого для пропаривания, целесообразно применять клинкер, содержащий 55-60% С3S и 7-10% СЗА при 40% гранулированного доменного шлака.

 

 

 

 

 

 

 

Схема 1 – Технологическая схема

 

Известняк   глина  ПАВ   шлак


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Режим работы  завода

4.1 Режим работы  завода и основных цехов

Отправным для  расчета технологического оборудования, потоков сырья, состава рабочих  и т.д. является режим работы завода, основных цехов.

Режим работы завода, цехов, определяет количество рабочих  дней в году, количество смен работы в сутки и рабочих часов  в смене.

Режим работы устанавливают  в соответствии с трудовым законодательством  по нормам технологического проектирования предприятий.

Режим работы характеризуется  числом рабочих дней в году (D) и количеством смен в сутки (n).

При 8-часовой  работе в смену режим работы предприятия  строительных материалов следующий:

- для цехов  с обжигом или другим непрерывно действующим оборудованием принимается режим с непрерывной работой цеха в сутки с учетом коэффициента использования оборудования (приложение №1) для его ежегодного капитального ремонта: D=365к.

При оттеке готовой  продукции потребителю на железнодорожный транспорт применяется трехсменная работа по непрерывной рабочей неделе с 365 рабочими днями, а при других видах транспорта как правило односменная работа - 260 рабочих дня.

Где К - коэффициент  использования оборудования. К = 0,83...0,942.

Принятый режим работы в проекте по каждой технологической операции оформляется виде таблицы, форма которой в общем случае дана ниже.

 

Таблица 3 - Режим  работы предприятия

Наименование  технологических операций

Сменность

Количество рабочих дней

1. Заготовка  сырья в карьере

2

260

2. Транспортировка сырья

2

260

3. Подготовка  сырьевых материалов

2

260

4. Сушка

3

303

5. Обжиг

3

303

6. Транспортирование  и складирование готовой продукции

2

260

7. Отпуск продукции

2

260

Информация о работе Основные сведения и свойства шлакопортландцемента