Основные этапы развития технологии бетона

Автор работы: Пользователь скрыл имя, 30 Ноября 2014 в 18:35, шпаргалка

Краткое описание

Однако использование бетона и железобетона для массового строительства началось только во второй половине XIX в., после получения и организации промышленного выпуска портландцемента, ставшего основным вяжущем веществом для бетонных и железобетонных конструкций. Вначале бетон использовался для возведения монолитных конструкций и сооружений. Применялись жесткие и малоподвижные бетонные смеси, уплотнявшиеся трамбованием. С появлением железобетона, армированного каркасами, связанными из стальных стержней, начинают применять более подвижные и даже литые бетонные смеси, чтобы обеспечить их надлежащее распределение и уплотнение в бетонируемой конструкции.

Прикрепленные файлы: 1 файл

с 1-54.docx

— 729.40 Кб (Скачать документ)

Легкими бетонами называют все виды бетонов, имеющие среднюю плотность в воздушно-сухом состоянии от 200 до 2000 кг/м3. Главные требования, предъявляемые к легкому бетону, — заданная средняя плотность, необходимая прочность к определенному сроку твердения и долговечность (стойкость). Характерными особенностями легкого бетона являются его пониженные средняя плотность и теплопроводность.

Легкие бетоны классифицируют по различным признакам: основному назначению, виду вяжущего, заполнителя, структуре.

По назначению легкие бетоны подразделяют на два вида: конструкционные,   включая   конструкционно-теплоизоляционные, и теплоизоляционные и др.

По виду вяжущего легкие бетоны могут быть на основе цементных, известковых, шлаковых, гипсовых, полимерных, обжиговых и других вяжущих, обладающих специальными свойствами.

По виду крупного пористого заполнителя установлены следующие виды легких бетонов: керамзитобетон, шунгизитобетон, аглопоритобетон, шлакопемзобетон, перлитобетон, бетон на Щебне из пористых горных пород, вермикулитобетон, шлакобетон (бетон на топливном или пористом отвальном металлургическом Шлаке), бетоны на аглопоритовом или зольном гравии.

По структуре легкие бетоны подразделяют на плотные, пори. зованные и крупнопористые.

Легкие бетоны на пористых заполнителях имеют принципиальные отличия от обычных тяжелых бетонов, обусловленные особенностями пористых заполнителей. Последние имеют меньшую плотность, чем плотные, небольшую прочность, зачастую ниже заданного класса бетона, обладают сильно развитой и шероховатой поверхностью. Эти качества легкого заполнителя влияют как на свойства легкобетонных смесей, так и на свойства бетона.

В зависимости от заполнителя, плотного или пористого, резко меняются водопотребность и водосодержание бетонной смеси, меняются и основные свойства легкого бетона. Одним из решающих факторов, от которых зависит прочность легкого бетона, является расход воды. При увеличении количества воды до оптимального прочность бетона растет. Оптимальный расход воды в легких бетонах соответствует наибольшей плотности смеси, уложенной в заданных условиях, и устанавливается по наибольшей прочности бетона или же по наибольшей плотности уплотненной смеси. Если же количество воды превышает оптимальное для данной смеси, то плотность цементного камня уменьшается, а с ним уменьшается и прочность бетона. Для легкого бетона оптимальный расход воды можно установить по наибольшей плотности уплотненной бетонной смеси или наименьшему выходу бетона. Следует также иметь в виду, что в легких бетонах некоторый избыток воды менее вреден, чем ее недостаток. Оптимальному расходу воды для бетона данного состава соответствует наилучшая удобоукладываемость, при которой наиболее компактно располагаются составляющие бетона.

Стремление максимально плотно уложить заполнитель объясняется тем, что наиболее легкий бетон заданной прочности получается при минимальном расходе вяжущего и наибольшем сближении зерен пористого заполнителя, т. е. при предельной степени уплотнения смеси. Хорошее уплотнение смеси достигается вибрацией с применением равномерно распределенного при-груза на поверхности формуемой массы (вибропрессованием, вибро штампованием).

Оптимальное количество воды для приготовления легких бетонов зависит главным образом от водопотребности заполнителя и вяжущего, интенсивности уплотнения смеси и состава бетона. Водопотребность заполнителя определяется зерновым составом и ; пористостью, и обычно чем она больше, тем больше суммарная -поверхность и открытая пористость его зерен.

Отсос   воды  из   цементного  теста   или   раствора   пористыми заполнителями в период приготовления и укладки бетонной смеси : вызывает   относительно   быстрое   ее   загустевание,   что   делает смесь    жесткой    и    трудноукладываемои.    Это    специфическое яойство усиливается и шероховатой, развитой поверхностью пористого заполнителя. Для повышения подвижности смеси необходимо вводить в нее большее количество воды, чем в обычные (тяжелые) бетоны.

Плотность и прочность легкого бетона зависят главным образом: от насыпной плотности и зернового состава заполнителя, расхода вяжущего и воды, а также от метода уплотнения легкобетонной смеси. По качеству пористого заполнителя можно ориентировочно судить, какая прочность легкого бетона может быть получена.

В строительной практике ограждающие и несущие конструкции получают из относительно плотных легких бетонов значительной прочности (2,5... 10 МПа). Снижение плотности достигается тщательным подбором зернового состава пористого заполнителя, а также наименьшим расходом вяжущего для бетона заданной прочности, т. е. максимальным заполнением объема бетона пористым заполнителем, так как заполнитель легче цементного камня. При этом важно правильное соотношение крупных и мелких фракций заполнителя. Для разных видов заполнителей будет свой оптимальный зерновой состав. Оптимальное содержание мелких фракций соответствует наименьшей плотности бетона и наименьшему расходу цемента. Однако с увеличением количества мелких фракций заполнителя сверх оптимального растет плотность бетона и ухудшается удобоукладываемость смеси. Оптимальный зерновой состав заполнителя подбирают опытным путем.

Для снижения плотности бетона без уменьшения его прочности целесообразно применять высокоактивные вяжущие вещества.

Особенностью легких бетонов является то, что их прочность зависит не только от качества цемента, но и его количества. С увеличением расхода цемента растут прочность и плотность бетона. Это связано с тем, что с увеличением количества цементного теста легкобетонные смеси лучше уплотняются, а также возрастает содержание в бетоне наиболее прочного и тяжелого компонента — цементного камня.

Теплоизоляционные свойства легких бетонов зависят от степени их пористости и характера пор. В легком бетоне тепло передается через твердый остов и через воздушные пространства, заполняющие поры, а также в результате конвекционного движения воздуха в замкнутом объеме. Поэтому чем меньше объем пор, тем меньше подвижность воздуха в бетоне и лучшими теплоизолирующими свойствами обладает бетон.

Легкие бетоны в силу своей высокой пористости менее морозостойки, чем тяжелые, но достаточно морозостойки для применения в стеновых и других конструкциях зданий и сооружений. Хорошую морозостойкость легких бетонов можно получить, применяя искусственные пористые заполнители, обладающие низким  водопоглощением,  например,  керамзит,  а  также  путем поризации цементного камня. Повышают морозостойкость легких бетонов также введением гидрофобизующих добавок.

Легкие бетоны ввиду универсальности свойств применимы в различных строительных элементах зданий и сооружений Так, из легких бетонов на пористых заполнителях, обладающие низкой теплопроводностью, изготовляют панели для стен и перекрытий отапливаемых зданий; из напряженного армированного бетона выполняют пролетные строения мостов, фермы, плиты для проезжей части мостов, из легкого бетона строят плавучие средства.

 

 

 

 

 

 

 

 

53. Ячеистые бетоны.

Ячеистый бетон — искусственный пористый строительный материал на основе минеральных вяжущих и кремнезёмистого заполнителя. Является одной из разновидностей лёгкого бетона.

Предназначен, в основном, для строительной теплоизоляции: утепление по железобетонным плитам перекрытий и чердачных перекрытий, в качестве теплоизоляционного слоя многослойных стеновых конструкций зданий различного назначения; для теплозащиты поверхностей оборудования и трубопроводов при температуре до 400°С; жаростойкие ячеистые бетоны применяются для теплоизоляции оборудования с температурой поверхности до 700°С.

В последние годы блоки из ячеистого бетона набирают популярность в качестве конструкционного стенового материала. Коттеджи и многоэтажные дома, построенные из ячеистого бетона, имеют лучшие тепловые характеристики по сравнению с кирпичными. Достигается это во многом благодаря правильной геометрии современных блоков. За счёт чётких размеров (±2 мм) блоки можно укладывать на специальный клей с клеящим слоем не более 3 мм, а не на слой цементного раствора, который обычно и служит мостиком холода.

В соответствии с ГОСТ 25485-89 "Бетоны ячеистые. Технические условия" бетоны классифицируются:

1. По функциональному назначению

   теплоизоляционный  – объёмная масса 300-500 кг/м³

    конструкционно-теплоизоляционный- объёмная масса 500—900 кг/м³

    конструкционный (бетон для конструкционных элементов  жилых и сельскохозяйственных  зданий) – объёмная масса 1000—1200 кг/м³

2. По способу поризации:

   газообразование (газобетоны, газосиликаты)

    пенообразование (пенобетоны, пеносиликаты)

    аэрирование (аэрированный ячеистый бетон, аэрированный ячеистый силикат).

К модификациям способов поризации относятся:

  вспучивание массы  газообразованием в вакууме (небольшое  разрежение)

    аэрирование массы под давлением (барботирование её сжатым воздухом) с последующим снижением давления до атмосферного (баротермальный способ)

    газопенная технология (пеногазобетон) – сочетание метода аэрирования и газообразования

3. По виду вяжущего вещества: в основном, используют цемент, известь, реже гипс (газогипс)

4. По виду кремнезёмистого  компонента: кварцевый песок, зола-унос  от сжигания угля, кислые металлургические  шлаки и др.

5. По способу твердения: неавтоклавные, предусматривающие  пропаривание, электропрогрев или другие виды прогрева при нормальном давлении, и автоклавные, которые твердеют при повышенном давлении и температуре.

 

 

 

 

 

 

 

 

 

 

 

54. Силикатные бетоны.

Силикатным бетоном называется искусственный бесцементный каменный материал, получаемый в результате автоклавного твердения смеси, состоящей из извести или других вяжущих веществ на ее основе, тонкодисперсных кремнеземистых добавок, песка и воды. При этом основным цементирующим веществом являются гидросиликаты кальция разной основности, образующиеся при химическом взаимодействии гидрата окиси кальция с кремнеземом, содержащимся в дисперсной добавке или кварцевом песке. Это взаимодействие значительно интенсифицируется в условиях автоклавной обработки, когда повышенное давление насыщенного пара обеспечивает сохранность в материале воды в жидкой фазе при температурах, превышающих 100°.

Силикатные бетоны приготовляют преимущественно мелкозернистые, т. е. их заполнителями являются кварцевые и кварцево-полевошпатные пески.

По структуре силикатные бетоны могут быть плотные тяжелые (только на кварцевом песке) и плотные легкие (с крупным или мелким пористым заполнителем). Разновидностью силикатных бетонов являются поризованные бетоны (газосиликат и пеносиликат), которые относятся к группе ячеистых бетонов.

Мелкозернистые плотные силикатные бетоны по сравнению с обычными цементными характеризуются более однородным строением, а также большей монолитностью структуры благодаря химической природе связи между цементирующим веществом и зернами заполнителя.

Тяжелые силикатные бетоны имеют объемный вес 1800 – 2200 кг/м3. Прочность их при сжатии обычно колеблется от 100 до 600 кг/см2 и зависит от состава смеси, режима автоклавной обработки и других факторов. Например, силикатные бетоны автоклавного твердения при расходе извести в 8 – 11% от веса твердых компонентов и при уплотнении вибрированием приобретают прочность 100 – 300 кг/см2. При добавке 15 – 30% тонкомолотого кварцевого песка, хорошем уплотнении бетонной смеси и оптимальном режиме автоклавной обработки их прочность при сжатии может быть увеличена в 2 – 3 раза и достигать 400 – 600 кг/см2.

Силикатный бетон имеет близкий к стали коэффициент линейного расширения, и величина сцепления его с арматурной практически такая же, как у цементного бетона (30 – 50 кг/см2 с гладкой арматурой и 50 – 100 кг/см2  с арматурой периодического профиля). В силикатном бетоне повышенной плотности с достаточной толщиной защитного слоя стальная арматура хорошо сохраняется и не подвергается коррозии. Однако в конструкциях внутренних помещений с влажностью воздушной среды более 75 % и в конструкциях, находящихся под систематическим воздействием воды или атмосферных осадков, необходима защита арматуры от коррозии с помощью различных покрытий (цементно-казеиновыми, цементно – полистирольными и другими обмазками).

Недостатком мелкозернистых силикатных бетонов является их повышенная деформативность и как следствие этого более низкий (в 1,5 – 2,5 раза) модуль упругости по сравнению с цементным бетоном на крупном заполнителе. В то же время благодаря значительной степени закристаллизованности цементирующих новообразований, прочной связи их с зернами песка и отсутствию крупных включений доля деформаций ползучести и пластических деформаций оказывается значительно меньшей, чем у цементного бетона.. При этом общие деформации, суммирующие упругие и длительные пластичные, в силикатном бетоне мало отличаются от соответствующих деформаций в обычном цементном бетоне.;

Водопоглощение силикатных бетонов в значительной мере зависит от способа их уплотнения при формовании изделий (вибрирование, вибропрессование) и колеблется в пределах 10 – 18%.

Морозостойкость силикатного бетона несколько ниже, чем цементного. Она достигает для высокопрочных бетонов 50 – 100 и более циклов, а для бетонов марок 150 – 200, применяемых для изготовления большинства конструкций гражданских и промышленных зданий, составляет 15 – 25 циклов. С целью повышения морозостойкости силикатных изделий, находящихся в условиях систематического воздействия переменных температур и влажности, следует вводить в состав бетона взамен части извести портландцемент из расчета 60 – 90 кг на 1 м3 бетона. Коррозионная стойкость силикатного бетона повышенной плотности (объемный вес 1900 кг/м3 и более) при воздействии агрессивной среды практически мало отличается от коррозионной стойкости тяжелого цементного бетона.

Подобие свойств тяжелого силикатного и цементного бетонов позволяет применять их для изготовления конструкций одинакового назначения.



 

 


Информация о работе Основные этапы развития технологии бетона