Основные этапы развития технологии бетона

Автор работы: Пользователь скрыл имя, 30 Ноября 2014 в 18:35, шпаргалка

Краткое описание

Однако использование бетона и железобетона для массового строительства началось только во второй половине XIX в., после получения и организации промышленного выпуска портландцемента, ставшего основным вяжущем веществом для бетонных и железобетонных конструкций. Вначале бетон использовался для возведения монолитных конструкций и сооружений. Применялись жесткие и малоподвижные бетонные смеси, уплотнявшиеся трамбованием. С появлением железобетона, армированного каркасами, связанными из стальных стержней, начинают применять более подвижные и даже литые бетонные смеси, чтобы обеспечить их надлежащее распределение и уплотнение в бетонируемой конструкции.

Прикрепленные файлы: 1 файл

с 1-54.docx

— 729.40 Кб (Скачать документ)

 

 

 

 

 

 

 

 

 

 

 

 

 

38. Методика испытаний бетона.

 

На результаты определения прочности бетона влияет много факторов образцы из одного и того же замеса, твердевшие в одинаковых условиях и испытанные на одном прессе, показывают различные значения прочности бетона. Условно эти факторы можно разделить на три группы- статистические, технологические, методические.  невозможно получить совершенно одинаковые по структуре образцы бетона Всегда будет наблюдаться пусть незначительное, но различие в распределении отдельных компонентов бетона, в возникающей системе дефектов (пор, микротрещин и . д), в колебания, свойств отдельных зерен составляющих (цемента и заполнителей) и новообразовании цементного камня. В результате появляется определенная неоднородность материала, которая сказывается на результата испытаний. Факторы, связанные с приготовлением образцов и качеством, относятся  технологическим. На результаты испытаний будут влиять параллельность граней образца, их ровность и шероховатость, условия изготовления. Taк при изготовлении бетонных образцов из пластичных, смесей при больших расходах воды и в ряде других случаев под зернами заполнителя вследствие седиментации возникают ослабленные места, которые имеют горизонтальное направление При испытании в этом случае заметное влияние на результаты будет оказывать расположение образца между плитами пресса. К методическим факторам относятся различные аспекты методики испытания, каждый из которых оказывает определенное влияние на его результат. Конструкция и особенности пресса, размеры образца, условие взаимодействия образца и пресса, скорость нагруження, влажность бетона — все с»ти факторы могут оказать существенное влияние на окончательный результат — предел прочности бетона. Действие плит пресса, уменьшая деформации слоев бетона, прилегающих к ним, как бы оказывает на них поддерживающее влияние и предохраняет от разрушения. Это явление принято называть эффектом обоймы. Поэтому кубы бетона имеют обычно характерную форму разрушения, когда наибольшие деформации и разрушения наблюдаются в среднем сечении образца, а образец после испытания как бы представляет две сложенные вершинами усеченные пирамиды

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39. Контроль и управление качеством бетона.

 

Для получения бетонов высокого качества и экономичности необходимо проводить постоянный контроль за их производством и на его основе управлять технологическими процессами, внося в них необходимые изменения и коррективы, учитывающие колебания свойств исходных материалов и условий производства и гарантирующие получение заданных свойств бетона при минимальных материальных, энергетических и трудовых затратах.

Контроль организуется на всех стадиях производства бетона и изделий из него и включает контроль свойств исходных материалов, приготовление бетонной смеси и ее уплотнение, структурообразование и твердение бетона и свойств готового материала или изделия. Для контроля используют различные способы и приборы. По полученным результатам вносят коррективы в состав бетона, в параметры и режимы технологических операций на основе закономерностей, учитывающих влияние на свойства готового бетона различных технологических факторов.

Для большей точности и надежности управления качеством бетона используют зависимости, полученные для условий конкретного производства. Эти зависимости должны постоянно корректироваться по результатам статистического контроля свойств бетона.

Для управления производством и качеством бетона используют вычислительную технику и автоматизированные системы управления. Для их работы требуется соответствующее математическое обеспечение, в частности использование математических моделей, которые связывают свойства бетона с качеством используемых материалов, составом бетона и условиями производства.

Управление качеством бетона осуществляется на основе пооперационного контроля производства. Для его проведения используют экспресс-методы, позволяющие быстро оценить свойства материала или параметры процесса, разрабатываются специальные полуавтоматические и автоматические средства, а также используется выборочная проверка объектов контроля.

Для оценки свойств цемента предложены рентгенографические и другие методы экспресс-анализа его минералогического состава и способы быстрого определения удельной поверхности цемента. По их результатам прогнозируется возможное влияние качества цемента на свойства приготовляемой бетонной смеси и бетон и при необходимости производятся изменения состава бетона и режима технологических операций.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40. Неразрушающие методы контроля качества бетона.

Неразрушающие методы контроля качества бетона — контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации. Неразрушающий контроль особенно важен при создании и эксплуатации жизненно важных изделий, компонентов и конструкций. Методы местных разрушений.

 Метод отрыва со  скалыванием и скалывания ребра  конструкции заключаются в регистрации  усилия, необходимого для скалывания  участка бетона на ребре конструкции, либо местного разрушения бетона  в процессе вырывания из него  анкерного устройства.

Метод отрыва со скалыванием и скалывания ребра конструкции заключаются в регистрации усилия, необходимого для скалывания участка бетона на ребре конструкции, либо местного разрушения бетона в процессе вырывания из него анкерного устройства.

Метод отрыва со скалыванием является единственным неразрушающим методом контроля прочности, для которого в стандартах прописаны градуировочные зависимости. Метод отрыва со скалыванием характеризуется наибольшей точностью, но и наибольшей трудоемкостью испытаний, обусловленной необходимостью подготовки шпуров для установки анкера. К недостаткам метода следует отнести также невозможность использования в густоармированных и тонкостенных конструкциях.Метод скалывания ребра конструкции используется главным образом для контроля линейных элементов (сваи, колонны, ригели, балки, перемычки и т.п.). В отличие от методов отрыва и отрыва со скалыванием, он не требует подготовительных работ. Однако при защитном слое менее 20мм и повреждениях защитного слоя метод неприменим.Метод отрыва стальных дисков заключается в регистрации напряжения, необходимого для местного разрушения бетона при отрыве от него металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска. В настоящее время метод используется крайне редко. Недостатки методов местных разрушений: повышенная трудоемкость; необходимость определения оси арматуры и глубины ее залегания; невозможность использования в густоармированных участках; частично повреждает поверхность конструкции.

Метод ударного импульса заключается в регистрации энергии удара, возникающей в момент соударения бойка с поверхностью бетона. ударные импульсы – это ударные волны малой энергии, генерируемые подшипниками качения вследствие соударений и изменений давления в зоне качения этих подшипников в течение всего срока службы подшипников и распространяющиеся в материалах деталей подшипника, подшипникового узла и прилегающих к ним деталей. Метод упругого отскока заключается в измерении величины обратного отскока ударника при соударении с поверхностью бетона. Типичным представителем приборов для испытаний по этому методу является склерометр Шмидта и его многочисленные аналоги. Метод упругого отскока, как и метод пластической деформации, основан на измерении поверхностной твердости бетона. ультразвуковой метод заключается в регистрации скорости прохождения ультразвуковых волн. По технике проведения испытаний можно выделить сквозное ультразвуковых прозвучивание, когда датчики располагают с разных сторон тестируемого образца, и поверхностное прозвучивание, когда датчики расположены с одной стороны.Метод сквозного ультразвукового прозвучивания позволяет, в отличие от всех остальных методов неразрушающего контроля прочности, контролировать прочность не только в приповерхностных слоях бетона, но и прочность тела бетона конструкции.Ультразвуковые приборы могут использоваться не только для контроля прочности бетона, но и для дефектоскопии, контроля качества бетонирования, определения глубины. Скорость распространения ультразвука в бетоне велика , до 4500 м/с. Градуировочную зависимость между скоростью распространения ультразвука и прочностью бетона на сжатие определяют предварительно для конкретного состава бетона. Это связано с тем, что применение 2-х градуировочных зависимостей для бетонов других или неизвестных составов может привести к ошибкам в определении прочности

41. Рядовой и высокопрочный бетоны.

 

Высокопрочный бетон прочностью 60... 100 МПа получают на основе цемента высоких марок, промытого песка и щебня прочностью не ниже 100 МПа. Высокопрочный бетон приготовляют с низким В/Ц = 0,3... 0,35 и ниже (смеси жесткие или малоподвижные) в бетоносмесителях принудительного действия. Для укладки смесей и формования изделий используют интенсивное уплотнение: вибрирование с пригрузом, двойное вибрирование.

Для приготовления высокопрочного бетона применяют различные способы повышения активности цемента и качества бетонной смеси (домол и виброактивация цемента, виброперемешивание, применение суперпластификаторов) и принимают высокий расход цемента. Большие перспективы в получении высокопрочных бетонов связаны с применением вяжущего низкой водопотребности (ВНВ), которое получают совместным помолом высокомарочного цемента и суперрластификатора С-3. При бетонировании массивных сооружений целесообразно применить цементы с пониженным содержанием алита (трех кальциевого силиката) и особенно целита (трех кальциевого алюмината), лучше всего белитовые (двух кальциевый силикат). Максимально допустимый расход белитового портландцемента составляет 450 кг/ куб.м. В качестве крупного заполнителя следует применять фракционированный щебень из плотных и прочных горных пород. Предел прочности при сжатии - у изверженных не менее ЮОМПа и у осадочных 80 Мпа. Песок для высокопрочных бетонов должен иметь пустотность менее 40%. Марки высокопрочных бетонов М 500 - 1000.   Прислать свою статью

Рядовой бетон.

В соответствии со спросом, свыше девяноста процентов производимого в стране бетона имеет класс прочности В30 и ниже. Традиционно распространены два варианта компоновки – цемент, вода, два немытых заполнителя или то же самое плюс пластификатор. В последние тридцать лет добавился третий – мелкозернистый бетон с одним заполнителем. Нормы расхода передаются из рук в руки без учета особенностей применяемых материалов. В лучшем случае рассчитываются с помощью методик и программ, типа , основанных на линейной зависимости прочности от цементо-водного отношения, известной как формула Боломея . Такой подход прост в практическом применении, вот только корректных результатов и повторяемости не обеспечивает. Уточнение подбора осуществляется методом тыка, как законодательно предписывает ГОСТ 27006-86. О статистических методах расчета прочности и ГОСТ Р 53231-2008 мало кто знает. Стандарт предписывает обеспечивать заданную прочность в любом случае. Практически все работают из расчета получения заданной прочности в половине случаев. Коэффициент вариации нередко достигает 50-, но мало кто его контролирует.

Считается, что пористость – необходимая составляющая цементного камня и бороться с ней бессмысленно. Почему-то умалчивается, что на практике главная причина воздуха в смеси – объем пустот смеси заполнителей больше объема цементного теста. Кроме потери прочности, водонепроницаемости и морозостойкости это приводит к таким хорошо известным последствиям, как расслаиваемость смесей, низкий класс поверхности бетонов. Попытки решить проблему применением пластификаторов приводят к обратному эффекту – из-за водоредуцирования объем цементного теста еще более уменьшается. В этом контексте выглядят смешными попытки достижения необходимого коэффициента уплотнения и водопоглощения в жестких смесях мелкозернистых бетонов увеличением давления пресса, подбором параметров вибрирования, поиском чудодейственных добавок и т. п. Типичный пример: расход цемента 450 кг/м3, В/Ц 0,3, песок Мкр 3,0. Пустотность песка в уплотненном состоянии 0,32, объем цементного теста, как нетрудно высчитать, 280 л/м3. Таким образом, объем воздуха в смеси при любых ухищрениях не может быть меньше 40 л/м3. В результате – бетон по прочности и водопоглощению не удовлетворяет требованиям ГОСТ 17608-91. Эту проблему, возникшую у предприятия ООО «Феникс – Рыбинск», удалось решить заменой песка его смесью с песком Мкр 0,16 в оптимальном отношении, обеспечивающем минимальную пустотность. Причем расход цемента был уменьшен до 405 кг/м3. Да и мелкий песок дешевле крупного. Но это полумера. На самом деле в рядовых бетонах расход цемента не должен быть выше 250–300 кг на м3. А для этого надо минимизировать пористость бетона в целом, включая цементный камень, использовать химические и механические методы активации цемента и оптимизировать В/Ц. Именно оптимизировать, а не минимизировать, как полагают рекламные агенты пластификаторов. Зависимость прочности от цементо-водного отношения не линейна, а унимодальна. Оптимум соответствует необходимому для наиболее полной гидратации цемента количеству воды. Это количество соответствует 27–28% от веса цемента усредненного состава. Если воды меньше, количество гидратировавшего цемента уменьшается, и прочность падает. Смесь без воды не имеет прочности. И не стоит забывать, что, уменьшая воду, для сохранения объема смеси приходится увеличивать расходы цемента и заполнителей, а вода – самый дешевый компонент бетона.

Имеем следующую концепцию компоновки оптимального по цене и параметрам бетона:

– вяжущее должно включать цемент максимальной активности, количество воды и свойства цемента должны обеспечивать максимальную гидратацию к расчетному сроку;

– для уменьшения расхода вяжущего пустотность заполнителя должна быть минимальна;

– стоимость заполнителей должна быть много меньшей стоимости цемента.

Эти три метода аддитивны, эффективность их применения складывается. Их можно применять по отдельности или в сочетании.

Увеличить активность цемента изготовитель бетона может двумя способами – механическим и химическим. Механический заключается в изменении гранулометрии цемента. Цемент, как правило, состоит из частиц с максимальным размером 100 мкм, средним 20–25 мкм. На рис. 1 представлены дифференциальные распределения размеров частиц цементов турецкого CEM I 42,5N и ЦЕМ II/А-П 32,5 Н ОАО «Мордовцемент», полученные методом лазерного исследования. Известно, что в нормальных условиях твердения к обычному проектному возрасту частицы цемента гидратируют на глубину не более 5–6 мкм . Частицы размером более 10–15 мкм бесполезны для образования клея. С другой стороны, существует гипотеза: «Все известные опыты проводились в том случае, когда в составе вяжущего были как крупные частицы – более 25 мкм, так и мелкие, ниже 5–10 мкм. Это все и путает. Если разделить вяжущее на фракции и отдельно на каждую фракцию подать нужное количество воды, то к удивлению обнаружите как отсутствие избыточной водопотребности, так и примерно равные скорости начала кристаллообразования. Но как только фракции смешаете в одном флаконе – то получаете все негативные факторы вместе. Физика процесса проста: с 40 до 5 мкм – огромные рост как удельной поверхности, так и кривизны этой самой поверхности. Вода под действием сил поверхностного натяжения скатывается с крупных частиц к мелким, крупные не успевают гидратировать. Следовательно, чтобы доставить воду на крупные частицы – нужен ее избыток, иначе им никогда не гидратировать. Но этого мало, так как мелкие частицы быстро прогидратировав начинают процесс кристаллообразования, а он связан с резким (в разы) увеличением плотности в локальной микрообласти. Вокруг этой области кардинально изменяется напряженно-деформированное состояние системы, когда в центре кристаллообразования образуется состояние всестороннего сжатия, значит, вокруг этой области – состояние растяжения. Из области кристаллообразования начинает выдавливаться несвязанная вода под диким давлением и с дикой скоростью. Это приводит к локальному разрушению близлежайшей области начавшей формироваться матрицы. Из-за неодновременного начала кристаллообразования вся структура подвергается диким градиентам различной природы, что приводит от образования микродефектов к их росту в макродефекты» . Мы разделяем эту гипотезу, следовательно, оптимальным считаем как можно более узкое распределение размеров частиц цемента в границах 10–15 мкм.

Информация о работе Основные этапы развития технологии бетона