Автор работы: Пользователь скрыл имя, 28 Января 2013 в 18:21, реферат
Одна из основных статистических процедур - вычисление средних величин для тех или иных совокупностей данных. Законы больших чисел состоят в том, что эмпирические средние сходятся к теоретическим. В классическом варианте: выборочное среднее арифметическое при определенных условиях сходится по вероятности при росте числа слагаемых к математическому ожиданию. На основе законов больших чисел обычно доказывают состоятельность различных статистических оценок. В целом эта тематика занимает заметное место в теории вероятностей и математической статистике.
1.Введение
2. Статистики интегрального типа и их асимптотика
3. Метод аппроксимации ступенчатыми функциями
4. Обобщение теоремы Хелли
5. Основные результаты
6. Статистика интегрального типа для проверки симметрии распределения
7. Заключение
8. Литература
Доказательство теоремы 1. Согласно методу аппроксимации ступенчатыми функциями рассмотрим оператор АТ. Как легко проверить, имеет место разложение
Поскольку
|f(x) - ATf(x)| < д(f, Xi), x
то первое слагаемое в правой части (15) не превосходит
а второе не превосходит
Согласно определению оператора АТ третье слагаемое в (15) имеет вид
Очевидно, оно не превосходит по модулю
(здесь используется
Согласно (16) первое слагаемое в правой части (15) не превосходит
Поскольку
то первое слагаемое в правой части (15) не превосходит
Из оценок, относящихся к трем слагаемым в разложении (15), следует, что
Используя оценку (17), докажем, что вn → 0 при n → ∞. Пусть дано е > 0. Согласно условию интегрируемости функции f по Риману-Стилтьесу, т.е. условию (14), можно указать разбиение T = T(е) такое, что
и в точках yi, i = 1, 2, …, m - 1 (см. (12)), функция F непрерывна.
Поскольку
Fn(Xi) = Fn(yi) - Fn(yi-1),
то из (10) следует, что существует число n = n(е) такое, что при n > n(е) справедливо неравенство
Из (17), (18) и (19) следует, что при n > n(е) справедливо неравенство
что и требовалось доказать.
Обсудим условие ограниченности f. Если оно не выполнено, то из (10) не всегда следует (11).
Пример 2. Пусть f(x) = 1/x при x > 0 и f(0)=0. Пусть F(0,5) = 0, т.е. предельное распределение сосредоточено на [1/2; 1]. Пусть распределение Fn на [0; Ѕ) имеет единственный атом в точке x = 1/n величиной n-1/2, а на [1/2; 1] справедливо (10). Тогда по причинам, изложенным при доказательстве теоремы 1,
однако
т.е. соотношение (11) не выполнено.
Условие ограниченности подынтегральной функции f можно заменить, как это сделано, например, в [28], на условие строгого возрастания функции распределения F.
Лемма. Пусть функции распределения F всюду строго возрастает, т.е. из x1 < x2 вытекает F(x1) < F(x2). Пусть функция f интегрируема по Риману-Стилтьесу по F, т.е. выполнено (14). Тогда функция f ограничена.
Доказательство. Рассмотрим точки 0 = y0 < y1 < y2 <…< y2m = 1 и два разбиения
Тогда для любых двух точек х и х′ можно указать конечную последовательность точек x1 = x, x2, x3, …, xs, xs+1 = x′ такую, что любые две соседние точки xi, xi+1, i = 1, 2, …, s, одновременно принадлежат некоторому элементу Ci разбиения T1 или разбиения T2, причем Сi ≠ Сj при i ≠ j. Действительно, пусть . Пусть для определенности q > p. Тогда можно положить x2 = yp+1, x3 = yp+2, …, xs = yq. Поскольку среди элементов разбиений Т1 и Т2 есть С1 = [yp; yp+2), то . Далее, , и т.д.
Из указанных выше свойств последовательности x1 = x, x2, x3, …, xs, xs+1 = x′ следует, что
Пусть теперь число max(yi – yi-2) настолько мало, что согласно (14)
Тогда согласно двум последним соотношениям
что и доказывает лемму.
Доказательство теоремы 2. Пусть условие (14) не выполнено, т.е. существуют число г > 0 и последовательность разбиений Tn, n = 1, 2, …, такие, что max(yi – yi-1) → 0 при n→∞ и при всех n
Для доказательства теоремы построим две последовательности функций распределения F1n и F2n, n = 1, 2, …, для которых выполнено (10), но последовательность
не стремится к 0 при n → ∞. Тогда (11) не выполнено хотя бы для одной из последовательностей F1n и F2n.
Для любого С – элемента некоторого разбиения Т – можно указать, как вытекает из определения д(f, C), точки x1(C) и x2(C) такие, что
f (x1(C)) - f(x2(C)) > Ѕ д(f, C). (21)
Построим F1n и F2n следующим образом. Пусть F1n(С) = F2n(С) = F(С) для любого С из Tn. При этом F1n имеет в С один атом в точке x1(C) величиной F(С), а F2n имеет в С также один атом в точке x2(C) той же величины F(С). Другими словами, распределение F1n в С сосредоточено в одной точке, а именно, в x1(C), а распределение F2n сосредоточено в x2(C). Тогда
Из (20), (21) и (22) следует, что
Остается показать, что
для последовательностей
y1(x, T) = max{ykn: ykn < x}, y2(x, T) = min{ ykn: ykn > x},
где ykn – точки, определяющие разбиения Tn согласно (12). В соответствии с определением Fin
Fin(yj(x, Tn))= F(yj(x, Tn)), i = 1, 2, j = 1, 2,
а потому
|Fin(x) – F(x)| < F(y2(x, Tn)) - F(y1(x, Tn)), i = 1, 2.
В силу условия max(ykn – y(k-1)n) → 0 и непрерывности F в точке x правая часть последнего соотношения стремится к 0 при n → ∞, что и заканчивает доказательство теоремы 2.
Теоремы 1 и 2 демонстрируют основные идеи предельной теории статистик интегрального типа и непараметрических критериев в целом. Как показывают эти теоремы, основную роль в рассматриваемой теории играет предельное соотношение (14). Отметим, что если д(f, Tn) → 0 при n → ∞, то (14) справедливо, но, вообще говоря, не наоборот. Естественно возникает еще ряд постановок. Пусть (14) выполнено для f1 и f2. При каких функциях h это соотношение выполнено для h(x, f1(x), f2(x))? В прикладной статистике вместо f(x) рассматривают fб(x, щ) и f(x, щ), а вместо интегрирования по функциям распределения Fn(x) – интегрирование по случайным мерам Fб(щ). Как меняются формулировки в связи с такой заменой? В связи со слабой сходимостью (т.е. сходимостью по распределению) ATfб к AT и переходом от fб(x, щ) к hб(x, f1б(x, щ), f2б(x, щ)) возникает следующая постановка. Пусть кб слабо сходится к к при б→∞. Когда распределения gб(кб) сближаются с распределениями gб(к)? Полным ответом на последний вопрос являются необходимые и достаточные условия наследования сходимости. Они приведены в приложении 1.
Основные результаты
Наиболее общая теорема типа теоремы 1 выглядит так [29].
Теорема 3. Пусть существует последовательность разбиений Tn, n = 1, 2, …, такая, что при n →∞ и б→∞
Пусть для любого С, входящего хотя бы в одно из разбиений Tn,
Fб(C, щ) → F(C) (24)
при б→∞ (сходимость по вероятности). Пусть fб асимптотически ограничены по вероятности при б→∞. Тогда
при б→∞ (сходимость по вероятности).
Как известно, полное сепарабельное метрическое пространство называется польским. Это понятие понадобится для формулировки аналога теоремы 2.
Теорема 4. Пусть Х – польское пространство, У конечномерно, существует измельчающаяся последовательность Tn разбиений, для которой соотношение (23) не выполнено. Тогда существует удовлетворяющая (24) последовательность Fб, для которой соотношение (25) неверно, хотя Fб слабо сходится к F при б→∞.
Условие (23) естественно назвать условием римановости, поскольку в случае, рассмотренном в теореме 1, оно является условием интегрируемости по Риману-Стилтьесу. Рассмотрим наследуемость римановости при переходе от f1б(x, щ) со значениями в У1 и f2б(x, щ) со значениями в У2, удовлетворяющих (23), к hб(x, f1б(x, щ), f2б(x, щ)) со значениями в У3.
Положим
где ||∙||k – норма (т.е. длина вектора) в пространстве Yk, k = 1, 2. Рассмотрим также множества
и функции
Наконец, понадобится измеритель колеблемости
и множество
Теорема 5. Пусть функции hб асимптотически (при б→∞) ограничены на множестве Z(a) при любом положительном a. Пусть функции f1б и f2б асимптотически ограничены по вероятности и удовлетворяют условию (23). Пусть для участвующей в (23) последовательности Tn
c(hб, Tn, a, е) → 0 (26)
при б→∞, n→∞, е→ 0 и любом положительном a. Тогда функции f3б(x, щ) = hб(x, f1б(x, щ), f2б(x, щ)) удовлетворяют условию (23) и асимптотически ограничены по вероятности.
Теорема 6. Пусть условие (26) не выполнено для hб. Тогда существуют детерминированные ограниченные функции f1б и f2б такие, что соотношение (23) выполнено для f1б и f2б и не выполнено для f3б.
Пример 3. Пусть X = [0; 1]k, пространства Y1 и Y2 конечномерны, функция hб ≡ h(x, y1, y2) непрерывна. Тогда условие (26) выполнено.
С помощью теорем 3 и 5 и
результатов о наследовании сходимости
можно изучить асимптотическое
поведение статистик
со значениями в банаховом пространстве У.
Теорема 7. Пусть для некоторой последовательности Tn разбиений Х справедливы соотношения (23) для f1б и f2б и (24) для Fб. Пусть последовательность функций hб удовлетворяет условию в теореме 5, конечномерные распределения (f1б(x, щ), f2б(x, щ)) слабо сходятся к конечномерным распределениям (f1(x, щ), f2(x, щ)), причем для f1 и f2 справедливо соотношение (23). Тогда
где L – расстояние Прохорова (см. раздел П-3 приложения 1),
Теорема 7 дает общий метод
получения асимптотических
Один из выводов общей теории состоит в том, что в качестве Fб можно использовать практически любую состоятельную оценку истинной функции распределения. Этот вывод использовался при построении критерия типа омега-квадрат для проверки симметрии распределения относительно 0 и обнаружения различий в связанных выборках (см. ниже).
Асимптотическое поведение
критериев типа Колмогорова может
быть получено с помощью описанного
выше метода аппроксимации ступенчатыми
функциями. Этот метод не требует
обращения к теории сходимости вероятностных
мер в функциональных пространствах.
Для критериев Колмогорова и
Смирнова достаточно использовать лишь
свойства эмпирического процесса и
броуновского моста. В случае проверки
согласия добавляется необходимость
изучения еще одного случайного
процесса. Он является разностью между
двумя функциями распределения.
Одна - функция распределения
Статистика интегрального типа для проверки симметрии распределения
В прикладной статистике часто возникает необходимость проверки гипотезы о симметрии распределения относительно 0. Так, при проверке однородности связанных выборок необходимость проверки этой гипотезы основана на следующем факте [6]. Если случайные величины Х и Y независимы и одинаково распределены, то для функции распределения H(x)=P(Z<x) случайной величины Z = X – Y выполнено, как нетрудно видеть, соотношение
H(-x)=1 - H(x).
Это соотношение означает
симметрию функции
Рассмотрим методы проверки
этой гипотезы. Сначала обсудим, какого
типа отклонения от гипотезы симметрии
можно ожидать при
Рассмотрим сначала
В этом случае распределение Z при альтернативе отличается сдвигом от симметричного относительно 0. Для проверки гипотезы однородности может быть использован критерий знаковых рангов, разработанный Вилкоксоном (см., например, справочник [34, с.46-53]).
Альтернативная гипотеза общего вида записывается как