Автор работы: Пользователь скрыл имя, 05 Февраля 2014 в 17:07, курсовая работа
Цель курсовой работы – освоить инструменты статистики для дальнейшего применения в решении управленческих задач. Можно выделить следующие задачи данного курсового проекта:
приобрести навыки работы с большими массивами данных и навыки представления данных статистического наблюдения в виде, удобном для восприятия, анализа и принятия решений;
освоить методы выполнения оценок параметров больших множеств по данным выборочного наблюдения;
развить аналитические навыки в ходе применения вариационного и корреляционного методов и интерпретации полученных результатов.
ВВЕДЕНИЕ 3
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 4
1.1. Аналитическая группировка. Структурные средние 4
1.2. Ряд динамики 6
1.3. Показатели вариации 8
1.4. Метод корреляционно – регрессионного анализа 10
2. АНАЛИТИЧЕСКАЯ ЧАСТЬ 13
2.1. Аналитическая группировка. Структурные средние 13
2.2. Оценка динамики изменения показателей 16
2.3. Расчет показателей вариаций 18
2.4. Распределение затрат на постоянные и переменные, методом корреляционно-регрессионного анализа 19
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 24
ФЕДЕРАЛЬНОЕ
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО
ОБРАЗОВАНИЯ |
Курсовая работа по дисциплине «Статистика» |
Тема: «Обработка статистических данных (статистика затрат)» |
|
Екатеринбург
2012
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 3
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 4
1.1. Аналитическая группировка. Структурные средние 4
1.2. Ряд динамики 6
1.3. Показатели вариации 8
1.4. Метод корреляционно – регрессионного анализа 10
2. АНАЛИТИЧЕСКАЯ ЧАСТЬ 13
2.1. Аналитическая группировка. Структурные средние 13
2.2. Оценка динамики изменения показателей 16
2.3. Расчет показателей вариаций 18
2.4. Распределение затрат на постоянные и переменные, методом корреляционно-регрессионного анализа 19
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 24
ВВЕДЕНИЕ
Статистика — это точная наука, изучающая методы сбора, анализа и обработки данных, которые описывают массовые действия, явления и процессы. Данные, изучаемые в статистике, затрагивают не отдельные объекты, а их совокупности¹.
Главным методом сбора данных для статистики является полное обследование объектов, имеющих отношение к изучаемой проблеме. Обработка статистических данных уже давно применяется в самых разнообразных видах человеческой деятельности. Трудно назвать ту сферу, в которой она бы не использовалась. Но, пожалуй, ни в одной области знаний и практической деятельности обработка статистических данных не играет такой исключительно большой роли, как в экономике, имеющей дело с обработкой и анализом огромных массивов информации о социально-экономических явлениях и процессах.
Всесторонний и глубокий
анализ этой информации, так называемых
статистических данных, предполагает
использование различных
Цель курсовой работы – освоить инструменты статистики для дальнейшего применения в решении управленческих задач. Можно выделить следующие задачи данного курсового проекта:
Аналитическая группировка - статистическая группировка, предназначенная для изучения взаимосвязей между признаками. Аналитическую группировку строят по одному из взаимосвязанных признаков, например факторному, а далее вычисляют по каждой выделенной группе средние (или относительные) значения другого признака. Параллельно сопоставляя значения обоих признаков по характеру их совместных изменений, делают заключение о наличии и направлении связи.
Важная проблема аналитических
группировок – правильный выбор
числа групп и определение
их границ, что в последующем обеспечивает
объективность характеристик
где
В процессе аналитических группировок следует соблюдать общие правила группировки, т. е. единицы в образованных группах должны быть существенно – различны, количество единиц в группах должно быть достаточным для расчета надежных статистических характеристик. Кроме того, групповые средние должны подчиняться определенной закономерности: последовательно увеличиваться или уменьшаться.
Мода - это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем - значение модальной величины признака по формуле:
(1.4)
где
Медиана - это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части. Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:
где
n – число признаков совокупности.
В случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда.
При вычислении медианы для
интервального вариационного
(1.6)
где
Ряд динамики – это временная последовательность значений, состоящая из статистических показателей. Каждый динамический ряд содержит две составляющие:
Классификация рядов динамики производится по следующим признакам:
Для характеристики интенсивности развития во времени используются статистические показатели, получаемые сравнением уровней между собой, в результате чего получаем систему абсолютных и относительных показателей динамики: абсолютный прирост, темп роста (коэффициент и показатель в % выражении), темп прироста (коэффициент и показатель в % выражении).
В ходе исследования необходимо сравнить несколько последовательных уровней, их можно получить путем сравнения с постоянной базой (базисные показатели), или сравнение с переменной базой (цепные показатели).
Базисные показатели характеризуют итоговый результат всех изменений в уровнях ряда от периода базисного уровня до данного (i-го) периода.
Цепные показатели характеризуют интенсивность изменения уровня от одного периода к другому в пределах того промежутка времени, который исследуется.
Абсолютный прирост выражает абсолютную скорость изменения ряда динамики и определяется как разность между данным уровнем и уровнем, принятым за базу сравнения.
где
Темп роста – относительный показатель, показывающий процентное изменение уровня ряда по сравнению с базисным или цепным показателем. Может быть представлен в виде коэффициента или в процентах
Темп прироста – относительный показатель, показывающий на сколько процентов один уровень ряда динамики больше или меньше другого, принимаемого за базу для сравнения
Вариация - это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно, по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.
Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.
Абсолютные показатели вариации включают:
– для сгруппированных данных (3.2)
– для не сгруппированных данных (3.3)
где
– для не сгруппированных данных (3.4)
– для сгруппированных данных (3.5)
– для не сгруппированных данных (3.6)
– для сгруппированных данных (3.7)
Относительные показатели:
Корреляционный анализ является одним из методов статистического анализа взаимосвязи нескольких признаков.
Информация о работе Обработка статистических данных (статистика затрат)