Автор работы: Пользователь скрыл имя, 04 Сентября 2013 в 18:46, контрольная работа
1) Предварительный анализ исходных данных выявил наличие одной территории (Краснодарский край) с аномальными значениями признаков. Эта территория исключена из дальнейшего анализа. Значения показателей в итоговых строках приведены без учёта указанной аномальной единицы.
Задание:
1. Расположите территории по возрастанию фактора X. Сформулируйте рабочую гипотезу о возможной связи Y и X.
2. Постройте поле корреляции и сформулируйте гипотезу о возможной форме и направлении связи.
3. Рассчитайте параметры а1 и а0 парной линейной функции .
4. Оцените тесноту связи с помощью показателей корреляции (ryx) и детерминации (r2yx), проанализируйте их значения.
5. Надёжность уравнений в целом оцените через F-критерий Фишера для уровня значимости a=0,05.
6. На основе оценочных характеристик выберите лучшее уравнение регрессии и поясните свой выбор.
Задача №4.
Предлагается изучить
взаимозависимость социально-
Y1 –инвестиции текущего года в экономику региона, млрд. руб.;
Y2 –среднегод. стоимость основных фондов в экономике региона, млрд. руб.;
Y3 –стоимость валового регионального продукта региона, млрд. руб.
X1 –инвестиции прошлого года в экономику региона, млрд. руб.
X2 –темп роста производства промышленной продукции в регионе, %
X3 –среднегодовая численность занятых в экономике региона, млн. чел.
При этом, сформулированы следующие исходные рабочие гипотезы:
Задание:
1. На основе рабочих
гипотез постройте систему
2. Укажите, при каких условиях может быть найдено решение каждого из уравнений и системы в целом. Дайте обоснование возможных вариантов подобных решений и аргументируйте выбор оптимального варианта рабочих гипотез;
3. Опишите методы, с помощью которых будет найдено решение уравнений (косвенный МНК, двухшаговый МНК).
Решение.
1. Отличительной особенностью уравнений системы является наличие прямых и обратных зависимостей между переменными Y1, Y2 и Y3. Указанная особенность характерна для так называемых структурных уравнений. В состав структурных уравнений входят: а) эндогенные переменные (Yj), значения которых формируется в условиях данной системы признаков и их взаимозависимостей и б) экзогенные переменные (xm), значения которых формируются вне данной системы признаков и условий, но сами экзогенные переменные участвуют во взаимосвязях данной системы и оказывают влияние на эндогенные переменные. Коэффициенты при эндогенных переменных обозначаются через , коэффициенты при экзогенных переменных обозначаются через , где i-число изучаемых объектов; m –число экзогенных переменных, которые обычно обозначают через x; j - число эндогенных переменных, обычно обозначаемых через Y. Таким образом, в каждом уравнении системы каждый коэффициент при переменной имеет двойную индексацию: 1) - номер эндогенной переменной, расположенной в левой части уравнения и выступающей в качестве результата; 2) – номер переменной, находящейся в правой части уравнения и выступающей в качестве фактора.
В нашей задаче система уравнений для описания выдвигаемые рабочие гипотезы будет иметь следующий вид:
2. Выполним идентификацию
каждого структурного
Результаты идентификации структурных уравнений и всей системы.
Номер уравнения |
Число эндогенных переменных в уравнении, H |
Число экзогенных переменных из общего их списка, отсутствующих в уравнении, D |
Сравнение параметров H и D+1 |
Решение об идентификации уравнения |
1 |
1 |
1 |
2 = 1+1 |
Точно идентифицировано |
2 |
1 |
2 |
1 < 2+1 |
Сверхидентифицировано |
3 |
2 |
3 |
2 < 3+1 |
Сверхидентифицировано |
Вся система уравнений в целом |
Идентифицирована |
3. Для поиска решений сверхидентифицированной системы уравнений применяются: а) косвенный метод наименьших квадратов (КМНК) для решения точно идентифицированных уравнений и б) двухшаговый МНК (ДМНК) для поиска решений сверхидентифицированных уравнений.