Автор работы: Пользователь скрыл имя, 02 Мая 2013 в 19:52, реферат
Под простым сопротивлением бруса деформированию понимают такие нагружения, при которых в поперечных сечениях элементов конструкций возникает один силовой фактор (растяжение или сжатие, сдвиг, кручение, изгиб).
Исключением является поперечный изгиб.
Осевым (центральным) растяжением или сжатием называют такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила, обозначаемая N.
1. Основные виды простого нагружения 2
2. Совместные действия изгиба и кручения 5
3. Устойчивость сжатых стержней 9
4. Формула Эйлера для определения критической силы 14
Для нахождения критических напряжений надо вычислить критическую силу , т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.
Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.
Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно.
Рассмотрим прямой стержень
постоянного сечения, шарнирно опертый
по концам; одна из опор допускает возможность
продольного перемещения
Рис.10. Расчетная
схема в «задаче Эйлера»
Нагрузим стержень центрально приложенными продольными сжимающими силами и дадим ему весьма небольшое искривление в плоскости наименьшей жесткости; стержень удерживается в искривленном состоянии, что возможно, так как .
Деформация изгиба стержня
предположена весьма малой, поэтому
для решения поставленной задачи
можно воспользоваться
|
(1) |
Возьмем сечение на расстоянии х от начала координат; ордината изогнутой оси в этом сечении будет у, а изгибающий момент равен
По исходной схеме изгибающий момент получается отрицательным, ординаты же при выбранном направлении оси у оказываются положительными. (Если бы стержень искривился выпуклостью книзу, то момент был бы положительным, а у — отрицательным и .)
Приведенное только что дифференциальное уравнение принимает вид:
деля обе части уравнения на EJ и обозначая дробь через приводим его к виду:
Общий интеграл этого уравнения имеет вид:
Это решение заключает в себе три неизвестных: постоянные интегрирования а и b и значение , так как величина критической силы нам неизвестна.
Краевые условия на концах стержня дают два уравнения:
в точке А при х = 0 прогиб у = 0,
В х = 1 у = 0.
Из первого условия следует (так как и cos kx =1)
0 = b.
Таким образом, изогнутая ось является синусоидой с уравнением
|
(2) |
Применяя второе условие, подставляем в это уравнение
у = 0 и х = l
получаем:
Отсюда следует, что или а или kl равны нулю.
Если а равно нулю, то из уравнения (2) следует, что прогиб в любом сечении стержня равен нулю, т. е. стержень остался прямым. Это противоречит исходным предпосылкам нашего вывода. Следовательно, sin kl = 0, и величина может иметь следующий бесконечный ряд значений:
где — любое целое число.
Отсюда , а так как то
и
Иначе говоря, нагрузка, способная удержать слегка искривленный стержень в равновесии, теоретически может иметь целый ряд значений. Но так как отыскивается, и интересно с практической точки зрения, наименьшее значение осевой сжимающей силы, при которой становится возможным продольный изгиб, то следует принять .
Первый корень =0 требует, чтобы было равно нулю, что не отвечает исходным данным задачи; поэтому этот корень должен быть отброшен и наименьшим корнем принимается значение . Тогда получаем выражение для критической силы:
|
(3) |
(Здесь J—минимальный момент инерции поперечного сечения стержня.) Это — так называемая формула Эйлера для сжатого стержня с шарнирно-опертыми концами. Значению критической силы (3) соответствует изгиб стержня по синусоиде с одной полуволной [формула (2)]