Автор работы: Пользователь скрыл имя, 14 Сентября 2013 в 23:35, реферат
Дуговой разряд в виде так называемой электрической (или вольтовой) дуги был впервые обнаружен в 1802 году русским учёным профессором физики Военно-медико-хирургической академии в Петербурге, а впоследствии академиком Петербургской Академии наук Василием Владимировичем Петровым. Петров следующими словами описывает в одной из изданных им книг свои первые наблюдения над электрической дугой.
Введение.
Свойства дугового разряда.
1.Образование дуги.
2. Катодное пятно. Внешний вид и отдельные части дугового разряда.
3. Распределение потенциала и вольтамперная характеристика при дуговом разряде.
4. Температура и излучение отдельных частей дугового разряда.
5. Генерация незатухающих колебаний при помощи электрической дуги.
6. Положительный столб дугового разряда при высоком и сверхвысоком давлении.
III. Применение дугового разряда.
1. Современные методы электрообработки.
2. Электродуговая сварка.
3. Плазменная технология.
4. Плазменная сварка.
IV. Заключение.
Содержание:
1.Образование дуги.
2. Катодное пятно. Внешний вид и отдельные части дугового разряда.
3. Распределение потенциала и вольтамперная характеристика при дуговом разряде.
4. Температура и излучение отдельных частей дугового разряда.
5. Генерация незатухающих колебаний при помощи электрической дуги.
6. Положительный столб дугового разряда при высоком и сверхвысоком давлении.
III. Применение дугового разряда.
1. Современные методы электрообработки.
2. Электродуговая сварка.
3. Плазменная технология.
4. Плазменная сварка.
IV. Заключение.
I
Дуговой разряд в виде так называемой электрической (или вольтовой) дуги был впервые обнаружен в 1802 году русским учёным профессором физики Военно-медико-хирургической академии в Петербурге, а впоследствии академиком Петербургской Академии наук Василием Владимировичем Петровым. Петров следующими словами описывает в одной из изданных им книг свои первые наблюдения над электрической дугой:
«Если на стеклянную плитку или на скамеечку со стеклянными ножками будут положены два или три древесных угля... и если металлическими изолированными направлятелями... сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трёх линий, то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медлительнее загораются и от которого тёмный покой довольно ясно освещен быть может... ».
Путь
к электрической дуге начался
в глубокой древности. Еще
Английский физик Уильям Гильберт (1544—1603) установил, что и другие тела (например, горный хрусталь, стекло), подобно янтарю, обладают свойством притягивать легкие предметы после натирания. Он назвал эти свойства электрическими, впервые введя этот термин в употребление (по-гречески янтарь—электрон).
Бургомистр из Магдебурга Отто фон Герике (1602—1686) сконструировал одну из первых электрических машин. Это была электростатическая машина, представлявшая собой серный шар, укрепленный на оси. Одним из полюсов служил... сам изобретатель. При вращении рукоятки из ладоней довольного бургомистра с легким потрескиванием вылетали синеватые искры. Позднее машину Герике усовершенствовали другие изобретатели. Серный шар был заменен стеклянным, а вместо ладоней исследователя в качестве одного из полюсов применены кожаные подушечки.
Большое значение имело изобретение в восемнадцатом веке лейденской банки – конденсатора, позволившего накапливать электричество. Это был стеклянный сосуд с водой, обернутый фольгой. В воду погружали металлический стержень, пропущенный через пробку.
Американский ученый Бенджамин Франклин (1706—1790) доказал, что вода в собирании электрических зарядов никакой роли не играет, этим свойством обладает стекло—диэлектрик.
Электростатические машины получили довольно широкое распространение, но лишь как забавные вещицы. Были, правда, попытки лечения больных с помощью электричества, однако каков был физиотерапевтический эффект такого лечения, сказать трудно.
Французский
физик Шарль Кулон (1736—1806)—
В сороковых
годах восемнадцатого века
С оригинальными
теориями о природе
II
1. Если в тлеющем разряде увеличивать силу тока, уменьшая внешнее сопротивление, то при большой силе тока напряжение на зажимах трубки начинает падать, разряд быстро развивается и превращается в дуговой. В большинстве случаев переход совершается скачком и практически нередко ведёт к короткому замыканию. При подборе сопротивления внешнего контура удаётся стабилизовать переходную форму разряда и наблюдать при определённых давлениях непрерывный переход тлеющего разряда в дугу. Параллельно с падением напряжения между электродами трубки идёт возрастание температуры катода и постепенное уменьшение катодного падения.
Применение обычного
способа зажигания дуги путём
раздвигания электродов
Вопрос о развитии
дуги при разрыве цепи
LdI/dt=(ع-WI)-U(I)=∆ (2).
Разность (ع — WI) есть не что иное, как ордината прямой сопротивления АВ (рис.1), а U(I)— ордината характеристики дуги при данном I. Чтобы dI/dt было отрицательно, т.е. Чтобы ток I непременно уменьшался со временем, и между электродами рубильника не образовалось стойкой дуги, надо, чтобы
Рис.1. Относительное положение прямой сопротивления и кривой вольтамперной характеристики установившейся дуги для случаев: а)когда дуга не может возникнуть при разрыве цепи; б)когда дуга возникает при разрыве в интервале силы тока, соответствующем точкам Р и Q.
имело место ∆<0, т. е. надо, чтобы во всех точках характеристики соблюдалось неравенство U(I)>ع-WI.
Для этого характеристика всеми своими точками должна лежать выше прямой сопротивления (рис. 1, а). Это простое заключение не учитывает ёмкости в цепи и относится лишь к постоянному току.
Точка
пересечения прямой
2. Катодное пятно, неподвижное на угольном катоде, на поверхности жидкой ртути находится в непрерывном быстром движении. Положение катодного пятна на поверхности жидкой ртути может быть закреплено при помощи металлического штифта, погруженного в ртуть и немного высовывающегося из неё.
В случае небольшого расстояния между анодом и катодом тепловое излучение анода сильно влияет на свойства катодного пятна. При достаточно большом расстоянии анода от угольного катода размеры катодного пятна стремятся к некоторому постоянному предельному значению, и площадь, занимаемая катодным пятном на угольном электроде в воздухе, пропорциональна силе тока и соответствует при атмосферном давлении 470 а/см².Для ртутной дуги в вакууме найдено 4000 а/см².
При уменьшении давления площадь, занимаемая катодным пятном на угольном катоде, при постоянной силе тока увеличивается.
Резкость
видимой границы катодного
Угольный
катод при горении дуги в
воздухе заостряется, тогда
Образованно
катодного пятна объясняется
следующим образом.
Непосредственно к катодному пятну прилегает часть разряда, называемая отрицательной или катодной кистью или отрицательным пламенем. Длина катодной кисти в дуге при низком давлении определяется тем расстоянием, на которое залетают быстрые первичные электроны, получившие свои скорости в области катодного падения потенциала.
Между отрицательной
кистью и положительным
При горизонтальном
расположении электродов и
3. В дуге Петрова высокая температура и высокое давление не дают возможности использовать для измерения распределения потенциала метод зондов.
Падение потенциала между электродами дуги складывается из катодного падения и Uк, анодного падения Uа и падения в положительном столбе. Сумму катодного и анодного падений потенциала можно определить, сближая анод и катод до исчезновения положительного столба и измеряя напряжение между электродами. В случае дуги при низком давлении можно определить значения потенциала в двух точках столба дуги, пользуясь методом зондовых характеристик, вычислить отсюда продольный градиент потенциала и далее подсчитать как анодное, так и катодное падение потенциала.
Установлено, что в дуговом разряде при атмосферном давлении сумма катодного и анодного падений примерно той же величины, что и ионизационный потенциал газа или пара, в котором происходит разряд.
В технике
применения дуги Петрова с
угольными электродами обычно пользуются
эмпирической формулой Айртона:
U=a+bl+(c+dl)/I (3)
Здесь U—напряжение между электродами, I—сила тока в дуге, l—длина дуги, а, b, с и d—четыре постоянных. Формула характеристики (3) установлена для дуги между угольными электродами в воздухе. Под l подразумевается расстояние между катодом и плоскостью, проведённой через края положительного кратера.
Перепишем формулу (4) в виде
U=а+c/I+l(b+d/I). (4)
В (4) члены, содержащие множитель l, соответствуют падению потенциала в положительном столбе; первые два члена представляют собой сумму катодного и анодного падения Uк+Uа. Постоянные в (3) зависят от давления воздуха и от условий охлаждения электродов, а следовательно, от размеров и формы углей.
В случае
дугового разряда в откачанном
сосуде, заполненном парами металла
(например, ртути), давление пара
зависит от температуры
Динамическая
характеристика дугового
вид, представленный на рис.3. Пунктиром показан ход напряжения при отсутствии разряда.
Рис. 3. Осциллограмма тока и напряжения дугового разряда на переменном токе
низкой частоты. Точки А, В, С и т.д.
соответствуют точкам, обозначенным теми
же буквами на рис.4.
Катод, не успевший ещё охладиться после разряда, имевшего место в предыдущем полупериоде тока, с самого начала полупериода, когда внешняя э.д.с. проходит через нуль, эмитирует электроны. От точки О до точки А характеристика соответствует несамостоятельному разряду, источником которого являются эмитируемые катодом электроны. В точке А происходит зажигание дуги. После точки А разрядный ток быстро увеличивается. При наличии сопротивления во внешней цепи напряжение между электродами дуги падает, хотя э.д.с. источника тока (пунктир на рис.3), пробегая синусоиду, ещё увеличивается. С уменьшением напряжения и тока, даваемого внешним источником, разрядный ток начинает уменьшаться.