Автор работы: Пользователь скрыл имя, 12 Мая 2012 в 23:05, реферат
Применение ИИ для усиления коммуникативных способностей информационных систем привело к появлению систем с интеллектуальным интерфейсом, среди которых можно выделить следующие типы.
Системы с интеллектуальным интерфейсом
Применение ИИ для усиления коммуникативных способностей информационных систем привело к появлению систем с интеллектуальным интерфейсом, среди которых можно выделить следующие типы.
В 1936 году философ Альфред Айер рассмотрел обычный для философии вопрос касательно других разумов: как узнать, что другие люди имеют тот же сознательный опыт, что и мы? В своей книге «Язык, истина и логика» Айер предложил алгоритм распознавания осознающего человека и не осознающей машины: «Единственным основанием, на котором я могу утверждать, что объект, который кажется разумным, на самом деле не разумное существо, а просто глупая машина, является то, что он не может пройти один из эмпирических тестов, согласно которым определяется наличие или отсутствие сознания». Это высказывание очень похоже на тест Тьюринга, однако точно неизвестно, была ли известна Тьюрингу популярная философская классика Айера.
К 1956 году британские учёные уже на протяжении 10 лет исследовали «машинный интеллект». Этот вопрос был обычным предметом для обсуждения среди членов «Ratio Club» — неформальной группы британских кибернетиков и исследователей в области электроники, в которой состоял и Алан Тьюринг, в честь которого был назван тест.
Тьюринг
в особенности занимался
Таким образом, к моменту публикации в 1950 году статьи «Вычислительные машины и разум», Тьюринг уже на протяжении многих лет рассматривал возможность существования искусственного интеллекта. Тем не менее, данная статья стала первой статьёй Тьюринга, в которой рассматривалось исключительно это понятие.
Тьюринг начинает свою статью утверждением: «Я предлагаю рассмотреть вопрос „Могут ли машины думать?“». Он подчёркивает, что традиционный подход к этому вопросу состоит в том, чтобы сначала определить понятия «машина» и «интеллект». Тьюринг, однако, выбрал другой путь; вместо этого он заменил исходный вопрос другим, «который тесно связан с исходным и формулируется относительно недвусмысленно». По существу, он предлагает заменить вопрос «Думают ли машины?» вопросом «Могут ли машины делать то, что можем делать мы (как мыслящие создания)?». Преимуществом нового вопроса, как утверждает Тьюринг, является то, что он проводит «чёткую границу между физическими и интеллектуальными возможностями человека».
Чтобы
продемонстрировать этот подход, Тьюринг
предлагает тест, придуманный по аналогии
с игрой для вечеринок «
В том же докладе Тьюринг позднее предлагает «эквивалентную» альтернативную формулировку, включающую судью, который беседует только с компьютером и человеком. Наряду с тем, что ни одна из этих формулировок точно не соответствует той версии теста Тьюринга, которая наиболее известна сегодня, в 1952 учёный предложил третью. В этой версии теста, которую Тьюринг обсудил в эфире радио Би-Би-Си, жюри задает вопросы компьютеру, а роль компьютера состоит в том, чтобы заставить значительную часть членов жюри поверить, что он на самом деле человек.
В статье Тьюринга учтены 9 предполагаемых вопросов, которые включают все основные возражения против искусственного интеллекта, поднятые после того, как статья была впервые опубликована.
Блей Витби указывает на 4 основные поворотные точки в истории теста Тьюринга — публикация статьи «Вычислительные машины и разум» в 1950, сообщение о создании Джозефом Уайзенбаумом программы Элиза в 1966, создание Кеннетом Колби программы PARRY, которая была впервые описана в 1972 году, и Коллоквиум Тьюринга в 1990.
Принцип работы Элизы заключается в исследовании введенных пользователем комментариев на наличие ключевых слов. Если найдено ключевое слово, то применяется правило, по которому комментарий пользователя преобразуется и возвращается предложение-результат. Если же ключевое слово не найдено, Элиза либо возвращает пользователю общий ответ, либо повторяет один из предыдущих комментариев. Вдобавок Вейзенбаум запрограммировал Элизу на имитацию поведения психотерапевта, работающего по клиент-центрированной методике . Это позволяет Элизе «притвориться, что она не знает почти ничего о реальном мире». Применяя эти способы, программа Вейзенбаума могла вводить в заблуждение некоторых людей, которые думали, что они разговаривают с реально существующим человеком, а некоторых было «очень трудно убедить, что Элиза […] не человек». На этом основании некоторые утверждают, что Элиза — одна из программ (возможно первая), которые смогли пройти тест Тьюринга. Однако это утверждение очень спорно, так как людей, «задающих вопросы», инструктировали так, чтобы они думали, что с ними будет разговаривать настоящий психотерапевт, и не подозревали о том, что они могут разговаривать с компьютером.
Работа Колби — PARRY — была описана, как «Элиза с мнениями»: программа пыталась моделировать поведение параноидального шизофреника, используя схожий (если не более продвинутый) с Элизой подход, примененный Вейзенбаумом. Для того чтобы проверить программу, PARRY тестировали в начале 70-х, используя модификацию теста Тьюринга. Команда опытных психиатров анализировала группу, составленную из настоящих пациентов и компьютеров под управлением PARRY, используя телетайп. Другой команде из 33 психиатров позже показали стенограммы бесед. Затем обе команды попросили определить, кто из «пациентов» — человек, а кто — компьютерная программа. Психиатры лишь в 48 % случаев смогли вынести верное решение. Эта цифра согласуется с вероятностью случайного выбора. Заметьте, что эти эксперименты не являлись тестами Тьюринга в полном смысле, так как для вынесения решения данный тест требует, чтобы вопросы можно было задавать в интерактивном режиме, вместо чтения стенограммы прошедшей беседы.
Пока что ни одна программа и близко не подошла к прохождению теста. Хотя такие программы, как Элиза (ELIZA), иногда заставляли людей верить, что они говорят с человеком, как, например, в неформальном эксперименте, названном AOLiza, но эти случаи нельзя считать корректным прохождением теста Тьюринга по целому ряду причин:
Самообучающиеся системы
Самообучающиеся интеллектуальные системы основаны на методах автоматической классификации ситуаций из реальной практики, или на методах обучения на примерах. Примеры реальных ситуаций составляют так называемую обучающую выборку, которая формируется в течение определенного исторического периода. Элементы обучающей выборки описываются множеством классификационных признаков.
Стратегия "обучения с учителем" предполагает задание специалистом для каждого примера значений признаков, показывающих его принадлежность к определенному классу ситуаций. При обучении "без учителя" система должна самостоятельно выделять классы ситуаций по степени близости значений классификационных признаков.
В процессе обучения проводится автоматическое построение обобщающих правил или функций, описывающих принадлежность ситуаций к классам, которыми система впоследствии будет пользоваться при интерпретации незнакомых ситуаций. Из обобщающих правил, в свою очередь, автоматически формируется база знаний, которая периодически корректируется по мере накоп-ления информации об анализируемых ситуациях.
Построенные в соответствии с этими принципами самообучающиеся системы имеют следующие недостатки:
Индуктивные системы позволяют обобщать примеры на основе принципа индукции "от частного к общему". Процедура обобщения сводится к классификации примеров по значимым признакам. Алгоритм классификации примеров включает следующие основные шаги.
Нейронные сети представляют собой классический пример технологии, основанной на примерах. Нейронные сети - обобщенное название группы математических алгоритмов, обладающих способностью обучаться на примерах, "узнавая" впоследствии черты встреченных образцов и ситуаций. Благодаря этой способности нейронные сети используются при решении задач обработки сигналов и изображений, распознавания образов, а также для прогнозирования.
Нейронная сеть - это кибернетическая модель нервной системы, которая представляет собой совокупность большого числа сравнительно простых элементов - нейронов, топология соединения которых зависит от типа сети. Чтобы создать нейронную сеть для решения какой-либо конкретной задачи, следует выбрать способ соединения нейронов друг с другом и подобрать значения параметров межнейронных соединений.