Автор работы: Пользователь скрыл имя, 20 Января 2015 в 18:48, реферат
Экспертные системы возникли как значительный практический результат в применении и развитии методов искусственного интеллекта - совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.
Область искусственного интеллекта имеет более чем сорокалетнюю историю развития.
Доопределяющие экспертные системы могут использовать для формирования решения несколько источников знаний. В этом случае могут использоваться эвристические приемы выбора единиц знаний из их конфликтного набора, например, на основе использования приоритетов важности, или получаемой степени определенности результата, или значений функций предпочтений и т.д.
Для аналитических задач классифицирующего и доопределяющего типов характерны следующие проблемные области:
Трансформирующие экспертные системы. В отличие от аналитических статических экспертных систем синтезирующие динамические экспертные системы предполагают повторяющееся преобразование знаний в процессе решения задач, что связано с характером результата, который нельзя заранее предопределить, а также с динамичностью самой проблемной области.
В качестве методов решения задач в трансформирующих экспертных системах используются разновидности гипотетического вывода:
Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе, например, через "доску объявлений".
Рисунок 1.7 – Структура многоагентной экспертной системы
Для многоагентных систем характерны следующие особенности:
Для синтезирующих динамических экспертных систем наиболее применимы следующие проблемные области:
Разработка интеллектуальных информационных систем отличается от создания обычного программного продукта. Опыт разработки ранних экспертных систем показал, что использование традиционной технологии программирования либо чрезмерно затягивает процесс разработки, либо вообще приводит к отрицательному результату. Это связано главным образом с необходимостью модифицировать принципы и способы построения по мере того, как увеличивается знание разработчиков о проблемной области.
Известно, что большая часть знаний в конкретной предметной области остается личной собственностью эксперта. Наибольшую проблему при разработке экспертной системы представляет процедура получения знаний у эксперта и занесения их в базу знаний, называемая извлечением знаний. Это происходит не потому, что он не хочет разглашать своих секретов, а потому, что не в состоянии сделать это — ведь эксперт знает гораздо больше, чем сам осознает. Для выявления знаний эксперта и их формализации на протяжении всего периода разработки с ним взаимодействует инженер по знаниям.
Чтобы избежать дорогостоящих и безуспешных попыток, был разработан набор рекомендаций для того, чтобы определить, является ли проблема подходящей для решения с помощью экспертной системы:
В настоящее время сложилась последовательность действий при разработке экспертных систем. Она включает следующие этапы: идентификация, получение знаний, концептуализация, формализация, выполнение, тестирование и опытная эксплуатация.
Этап идентификации связан, прежде всего, с осмыслением тех задач, которые предстоит решать будущей экспертной системе, и формированием требований к ней. На этом этапе планируется ход разработки прототипа системы, определяются источники знаний (книги, эксперты, методики), цели (распространение опыта, автоматизация рутинных операций), классы решаемых задач и т.д. Результатом идентификации является ответ на вопрос, что надо сделать и какие ресурсы необходимо задействовать.
При решении проблемы получения знаний выделяют три стратегии: приобретение знаний, извлечение знаний и обнаружение знаний.
Рисунок 1.8 – Технология разработки экспертных систем
Под приобретением (acquisition) знаний понимается способ автоматизированного наполнения базы знаний посредством диалога эксперта и специальной программы.
Извлечением (elicitation) знаний называют процедуру взаимодействия инженера по знаниям с источником знаний (экспертом, специальной литературой и др.) без использования вычислительной техники.
Термины «обнаружение знаний» (knowledge discovery), а также Data Mining связывают с созданием компьютерных систем, реализующие методы автоматического получения знаний.
На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач. Этот этап завершается созданием модели предметной области, включающей основные концепты и отношения. Модель представляется в виде графа, таблицы, диаграммы или текста.
На этапе формализации все ключевые понятия и отношения выражаются на некотором формальном языке, который выбирается из числа уже существующих, либо создается заново. Другими словами, на данном этапе определяется состав средств и способы представления декларативных и процедурных знаний, осуществляется это представление и в итоге создается описание решения задачи экспертной системы на выбранном формальном языке.
На этапе выполнения создается один или несколько реально работающих прототипов экспертной системы. Для ускорения этого процесса в настоящее время широко применяются различные инструментальные средства.
На данном этапе оценивается и проверяется работа программы прототипа с целью приведения ее в соответствие с реальными запросами пользователей. Прототип проверяется по следующих основным позициям:
Задача стадии тестирования — выявление ошибок и выработка рекомендаций по доводке прототипа экспертной системы до промышленного образца.
На этапе опытной эксплуатации проверяется пригодность экспертной системы для конечного пользователя. Пригодность определяется в основном удобством и полезностью разработки. Под полезностью понимается способность экспертной системы определять в ходе диалога потребности пользователя, выявлять и устранять причины неудач в работе, а также удовлетворять указанные потребности пользователя (решать поставленные задачи). Удобство работы подразумевает естественность взаимодействия с экспертной системой, гибкость (способность системы настраиваться на различных пользователей, а также учитывать изменения в квалификации одного и того же пользователя) и устойчивость системы к ошибкам (способность не выходить из строя при ошибочных действиях пользователя).
После успешного завершения этапа опытной эксплуатации экспертная система классифицируется как коммерческая система, пригодная не только для собственного использования, но и для продажи различным потребителям.
Рисунок 1.9 – Взаимосвязи основных участников построения и эксплуатации экспертных систем
В разработке экспертной системы участвуют представители следующих специальностей:
Эксперт определяет соответствующий круг знаний, обеспечивает их полноту и правильность введения экспертной системы.
Инженер по знаниям выявляет совместно с экспертом структурированность знаний, выбор инструментального средства, программирует стандартные функции, которые будут использоваться в правилах экспертной системы.
Программист разрабатывает инструментальные средства, содержащие все компоненты создания экспертных систем. Осуществляет сопряжение экспертных систем с пользователем. В использовании экспертных систем участвуют специалисты:
Конечный пользователь имеет возможность только использования экспертных систем. Клерки могут добавлять, модифицировать базу знаний экспертной системы.
В настоящее время имеются средства, ускоряющие проектирование и разработку ЭС. Их называют инструментальными средствами, или просто инструментарием. Иными словами, под инструментальными средствами понимают совокупность аппаратного и программного обеспечения, позволяющего создавать прикладные системы, основанные на знаниях.
Среди программных инструментальных средств выделяют следующие большие группы:
Преимущества экспертных систем: