Автор работы: Пользователь скрыл имя, 20 Января 2015 в 18:48, реферат
Экспертные системы возникли как значительный практический результат в применении и развитии методов искусственного интеллекта - совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.
Область искусственного интеллекта имеет более чем сорокалетнюю историю развития.
ВВЕДЕНИЕ
Экспертные системы возникли как значительный практический результат в применении и развитии методов искусственного интеллекта - совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.
Область искусственного интеллекта имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем, машинный перевод, распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр.
Экспертная система - это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. Экспертные системы выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение экспертных систем на предприятиях способствует эффективности работы и повышению квалификации специалистов.
Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличие от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы.
При создании экспертных систем возникает ряд затруднений. Это, прежде всего, связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят «машиной». Но эти страхи не обоснованы, так как экспертные системы не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения. Также экспертные системы неприменимы в больших предметных областях и в тех областях, где отсутствуют эксперты.
Причиной повышенного интереса, который экспертные системы вызывают к себе на протяжении всего своего существования, является возможность их применения к решению задач из самых различных областей человеческой деятельности.
Экспертные системы — это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей.
Основу ЭС составляет база знаний (БЗ) о предметной области, которая накапливается в процессе построения и эксплуатации ЭС. Накопление и организация знаний - важнейшее свойство всех ЭС.
Рисунок 1.1 – Структура идеальной экспертной системы
База знаний включает в себя правила и общие факты. Механизм логического вывода включает в себя рабочую память и механизм логического вывода. Рабочая память (база данных) используется для хранения промежуточных результатов. Экспертная система работает в двух режимах:
Результаты обработки полученных данных поступают в модуль советов и объяснений и после перекодировки на язык, близкий к естественному, выдаются в виде советов, объяснений и замечаний. Если ответ не понятен пользователю, он может потребовать от экспертной системы объяснения его получения.
В любой момент времени в системе существуют три типа знаний:
Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.
Знания являются явными и доступными, что отличает ЭС от традиционных программ, и определяет их основные свойства, такие, как:
Рисунок 1.2 – Основные свойства экспертных систем
Типичная статическая ЭС состоит из следующих основных компонентов (рисунок 1.3.):
База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.
База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.
Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.
Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.
Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.
Рисунок 1.3 – Структура статической экспертной системы
Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.
Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).
В режиме приобретения знаний общение с ЭС осуществляет (через посредничество инженера по знаниям) эксперт. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования с данными, характерные для рассматриваемой области.
Отметим, что режиму приобретения знаний в традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода в случае ЭС разработку программ осуществляет не программист, а эксперт (с помощью ЭС), не владеющий программированием.
В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу). В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее.
Структуру, приведенную на рисунке 1.3, называют структурой статической ЭС. ЭС данного типа используются в тех приложениях, где можно не учитывать изменения окружающего мира, происходящие за время решения задачи. Первые ЭС, получившие практическое использование, были статическими.
Рисунок 1.4 – Структура динамической экспертной системы
На рисунке 1.4 показано, что в архитектуру динамической ЭС по сравнению со статической ЭС вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением. Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической ЭС (база знаний и машина вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.
На этапе формализации базы знаний осуществляется выбор метода представления знаний (совокупность средств структурирования и обработки единиц знаний). В рамках выбранного формализма осуществляется проектирование логической структуры базы знаний.
Классификация методов представления знаний с точки зрения особенностей отображения различных видов концептуальных моделей: соотношения структурированности и операционности, детерминированности и неопределенности, статичности и динамичности знаний.
Рисунок 1.5 – Классификация методов представления знаний
Объектные методы представления знаний в большей степени ориентированы на представление структуры фактуального знания, а правила - операционного.
Рисунок 1.6 – Классификация экспертных систем
Классифицирующие экспертные системы. К аналитическим задачам прежде всего относятся задачи распознавания различных ситуаций, когда по набору заданных признаков (факторов) выявляется сущность некоторой ситуации, в зависимости от которой выбирается определенная последовательность действий. Таким образом, в соответствии с исходными условиями среди альтернативных решений находится одно, наилучшим образом удовлетворяющее поставленной цели и ограничениям.
Экспертные системы, решающие задачи распознавания ситуаций, называются классифицирующими, поскольку определяют принадлежность анализируемой ситуации к некоторому классу. В качестве основного метода формирования решений используется метод логического дедуктивного вывода от общего к частному, когда путем подстановки исходных данных в некоторую совокупность взаимосвязанных общих утверждений получается частное заключение.
Доопределяющие экспертные системы. Более сложный тип аналитических задач представляют задачи, которые решаются на основе неопределенных исходных данных и применяемых знаний. В этом случае экспертная система должна как бы доопределять недостающие знания, а в пространстве решений может получаться несколько возможных решений с различной вероятностью или уверенностью в необходимости их выполнения. В качестве методов работы с неопределенностями могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика.