Формирование познавательных логических учебных действий у младших школьников путем решения текстовых задач

Автор работы: Пользователь скрыл имя, 12 Апреля 2014 в 06:34, курсовая работа

Краткое описание

По сути, происходит переход от обучения как преподнесения системы знаний к работе (активной деятельности) над заданиями (проблемами) с целью выработки определенных решений; от освоения отдельных учебных предметов к полидисциплинарному (межпредметному) изучению сложных жизненных ситуаций; к сотрудничеству учителя и учащихся в ходе овладения знаниями, к активному участию последних в выборе содержания и методов обучения.

Прикрепленные файлы: 1 файл

курсовик исправленный с номерами.doc

— 190.00 Кб (Скачать документ)

Низкому уровню сформированности умения решать задачи соответствуют работы и ответы, в которых ученик не справляется с решением задач и вычислениями в них даже с помощью учителя. Допускает 2 и более грубых ошибки.

Чтобы научить ребенка работе над текстовой задачей, учитель может использовать различные приемы обучения, соответствующие совершенствованию логического мышления и творческих способностей детей.

Выше были описаны традиционно используемые приемы работы над текстовой задачей. Рассмотрим еще несколько конкретных примеров работы над задачей [12, 41].

Прием, основанный на предложенных объектах, сюжете, вспомогательной модели (приложение №1). Данный прием рассчитан на учащихся второго-третьего классов.

На доске заранее вывешиваются карточки с объектами «овощи», «свекла», «морковь», «картофель», а также вспомогательная модель задачи.

Уч итель дает учащимся следующие команды:

– Выберите слова, характеризующие сюжет задачи. (Школьники вырастили овощи.)

– Где выращивают школьники овощи? (На пришкольном участке).

– Какое слово из предложенных объектов, записанных в столбце, общее? (Овощи.)

– Соотнесите предложенные объекты со схемой, указав количественные характеристики. (Целое – овощи. Количество овощей неизвестно. Части: свекла – 20 кг, морковь – 12 кг, картофель – 8 кг).

– Сформулируйте текст задачи. (Школьники вырастили на пришкольном участке 20 кг свеклы, 12 кг моркови и 8 кг картофеля. Сколько килограммов овощей вырастили школьники?)

– О какой величине говорится в задаче? (О массе.)

– Как иначе можно сформулировать требование? (Какова масса собранного урожая?)

Далее учитель предлагает ученикам самостоятельно решить эту задачу в рабочих тетрадях.

20 + 12 + 8 = 40 (кг)

Ответ: 40 кг урожая собрали школьники.

Затем совместно с учителем дети проверяют правильность решения предложенной задачи. В качестве способа проверки могут выступать сравнение своего решения с выполненным на закрытой части доски, чтение решения вслух Прием составления задачи по предложенной программе действий. Данный прием развивает коммуникативные способности ребенка, способность неординарно мыслить, и рассчитан на учащихся не младше второго класса. На доске вывешиваются схемы (см. рисунок №8). Учитель предлагает учащимся составить по данной схеме задачу, а затем решить ее.

Дети составляют задачу: «Миша решил 3 уравнения и 7 примеров. На сколько больше примеров, чем уравнений, решил Миша? На сколько меньше уравнений, чем примеров, решил Миша?»

Решение:

7 – 3 = 4 (шт.)

Ответ: на 4 примера больше, чем уравнений, решил Миша.

Учитель спрашивает одного из учеников, как решить эту задачу и что в итоге получится. Остальные дети делают проверку.

 

Рис. 3. Схема для составления текстовой задачи

 

Аналогичная работа проводится со следующей схемой (см. рисунок 4.).

 

Рис. 4 Схема для составления текстовой задачи

 

«Миша нарисовал 2 рисунка, а Маша 4. Сколько всего рисунков нарисовали дети? На сколько рисунков больше нарисовала Маша, чем Миша?»

Решение:

  1. 2 + 4 = 6 (шт.) – нарисовали вместе.
  2. 4 – 2 = 2 (шт.) – Маша нарисовала больше Миши.

Ответ: 6 рисунков, на 2 рисунка.

Прием составления задачи на основе нескольких задач, содержащих один сюжет и часть общих объектов с их количественными характеристиками.

Цель данного приема состоит в том, чтобы учить школьников выделять основные структурные компоненты задачи (условие и требование). Подобрав специальным образом численные данные, учитель может использовать этот прием в любом классе начальной школы.

Задача 1. В школьную библиотеку привезли новые учебники. В первый день библиотекари расставили 210 учебников по русскому языку, во второй – 135 учебников по математике. Сколько учебников расставили библиотекари по полкам за два дня?

Задача 2. В школьную библиотеку привезли учебники. В первый день библиотекари расставили по полкам 210 учебников по русскому языку, во второй – 63 учебника по чтению. Сколько учебников расставили библиотекари по полкам за два дня?

Задача 3. В школьную библиотеку привезли учебники. В первый день библиотекари расставили по полкам 97 учебников по английскому языку, во второй – 63 учебника по чтению. Сколько расставили библиотекари по полкам за два дня?

Учитель дает следующие команды детям:

– Прочитайте задачи.

– Что общего в данных задачах? (Сюжет, требование).

– Что можно сказать об объектах и количественных характеристиках задач? (Часть объектов и их количественные характеристики в первой и второй задачах, а также во второй и третьей задачах одинаковые).

– Сформулируйте текст одной задачи, используя все объекты и их количественные характеристики. (В школьную библиотеку привезли новые учебники. Из них в первый день расставили по полкам 210 учебников по русскому языку и 97 по английскому языку, во второй – 135 учебников по математике и 63 учебника по чтению. Сколько учебников расставили библиотекари по полкам за два дня?)

Прием обучения составлению задач по предложенному решению с подробным пояснением.

Цель данного приема состоит в том, чтобы учить детей соотносить текстовую задачу с предложенным решением.

На доске дано решение этой задачи.

1) 3 + 15 = 18 – концертов дал детский  хор в городе и в санатории.

2) 30 – 18 = 12 – концертов дал детский  хор в сельских клубах

Учитель задает детям вопросы:

– Известно ли нам, где давал концерты детский хор? (В городе, санатории, сельских клубах.)

– Известно ли нам, сколько концертов дал хор в городе? (3 или 15)

– Известно ли нам, сколько концертов дал хор в санатории? (15 или 3)

– Сколько всего концертов дал хор? (30)

– Составьте задачу по первому равенству. (Детский хор дал 3 концерта в городе и 15 концертов в санатории. Сколько всего концертов дал детский хор в городе и в санатории?)

– Составьте задачу по второму равенству. (За лето детский хор дал 30 концертов. Из них 18 – в городе и санатории, а остальные в сельских клубах. Сколько концертов дал детский хор в сельских клубах?)

– Опираясь на решение задачи, сформулируйте требование задачи. (Узнать, сколько концертов дал детский хор в сельских клубах).

– Сформулируйте текст задачи, опираясь на два действия. (Детский хор дал 30 концертов. Из них 3 в городе, 15 – в санатории, а остальные – в сельских клубах. Сколько концертов дал детский хор в сельских клубах?)

Прием составления текста задачи по сюжетным рисункам с изменением действия (приложение №2).

Цель данного приема состоит в том, чтобы учить детей находить математические модели в реальной ситуации, учить переводить сюжетную ситуацию на математический язык. Подбирая соответствующие сюжеты, учитель может применить прием в любом классе начальной школы.

– По рисункам определите сюжет задачи. Как он меняется от первого рисунка ко второму? (Курица снесла яйца, из них вылупились цыплята).

– Назовите объекты задачи. (Курица, яйца, цыплята).

– С какими из них мы будем проводить вычислительные операции? (С яйцами.)

– Что вы можете сказать о количественной характеристике объектов на первом рисунке? (На первом рисунке изображены 4 яйца).

– На втором рисунке из яиц вылупились цыплята. Сколько их? (3)

– Сформулируйте требование задачи. (Сколько яиц осталось целыми?)

– Сформулируйте текст задачи. (Курица высидела 4 яйца. Через некоторое время из 3 яиц вылупились цыплята. Сколько яиц осталось целыми?)

Рассмотренные приемы работы над текстовой задачей достаточно разнообразны, однако, они рассчитаны в основном на учащихся с уровнем знаний выше среднего. У учеников, которые обладают низким или средним уровнем, эти приемы работы над текстовой задачей позволяют, с помощью учителя или других учащихся, повысить уровень их обученности.

 

Глава 2. Примеры использования различных форм работы младших школьников в процессе решения текстовых задач

 

В поисках путей более эффективного использования структуры уроков разных типов особую значимость приобретает форма организации учебной деятельности учащихся на уроке.

Ранее были описаны признаки различных форм организации деятельности школьников на уроках математики. В пункте 2.2 была дана характеристика этапам решения задачи и приемам их выполнения. Эти приемы стандартно применяются учителями начальной школы при фронтальной форме работы над задачей. Ниже мы рассмотрим примеры реализации групповой и индивидуальной форм работы учащихся при решении текстовых задач.

Как известно, признаками групповой работы учащихся на уроке являются следующие:

- класс на данном уроке делится  на группы для решения конкретных  учебных задач;

- каждая группа получает определенное задание (либо одинаковое, либо дифференцированное) и выполняет его сообща под непосредственным руководством лидера группы или учителя;

- задания в группе выполняются  таким способом, который позволяет  учитывать и оценивать индивидуальный вклад каждого члена группы;

- состав группы непостоянный, он  подбирается с учетом того, чтобы  с максимальной эффективностью  для коллектива могли реализоваться  учебные возможности каждого  члена группы.

Задания, решаемые некоторым количеством учащихся, можно разделить на две группы: репродуктивные и продуктивные.

К репродуктивным заданиям относится, например, решение арифметических сюжетных задач знакомых видов. От учащихся требуется при этом воспроизведение знаний и их применение в привычной ситуации – работа по образцу, выполнение тренировочных упражнений.

К продуктивным заданиям относятся упражнения, отличающиеся от стандартных. Ученикам приходится применять знания в измененной или в новой незнакомой ситуации, осуществлять более сложные мыслительные действия (например, поисковые, преобразующие), создавать новый продукт (составлять задачи, сочинять сказки на основе сюжетных задач). В процессе работы над продуктивными заданиями школьники приобретают опыт творческой деятельности.

Дифференцированная работа чаще всего организуется следующим образом: учащимся с низким и ниже среднего уровнем обученности предлагаются репродуктивные задания, а ученикам со средним, выше среднего и высоким уровнем обученности – творческие задания.

Рассмотрим групповую работу па примере конкретной задачи (1 класс).

«В вазе лежало 5 желтых и 2 зеленых яблока. 3 яблока съели. Сколько яблок осталось?»

Задание для 1-й группы учащихся с низким уровнем обученности. Решите задачу. Подумайте, можно ли ее решить другим способом.

Задание для 2-й группы учащихся со средним уровнем обученности. Решите задачу двумя способами. Придумайте задачу с другим сюжетом так, чтобы решение при этом не изменилось.

Задание для 3-й группы учащихся с уровнем обученности выше среднего. Решите задачу двумя способами. Составьте задачу, обратную данной, и решите ее.

Задание для 4-й группы учащихся с высоким уровнем обученности. Решите задачу двумя способами. Измените задачу так, чтобы ее можно было решить тремя способами. Решите полученную задачу тремя способами.

Следует отметить, что организация такой формы работы требует от учителя высокого уровня профессионального мастерства. Адекватное образование групп, распределение обязанностей внутри них, распределение учебного времени, разъяснение требований к оформлению записей, своевременная проверка качества выполнения задания должны быть продуманы с особой тщательностью, поскольку некоторые команды («Подумайте …», «Придумайте …», «Составьте …» и т.п.) чаще всего на уроках математики в младших классах выполняются фронтально, не сопровождаясь записями.

Можно предложить продуктивные задания всем ученикам. Но при этом детям с низким уровнем обученности даются задания с элементами творчества, в которых нужно применить знания в измененной ситуации, а остальным – творческие задания на применение знаний в новой ситуации.

Приведем пример дифференциации заданий для учащихся второго-третьего классов.

«Для новогодних подарков привезли 48 кг конфет. В пакетах было 12 кг конфет, в коробках – в три раза меньше, чем в пакетах, а остальные конфеты были в ящиках. Сколько килограммов конфет было в ящиках?»

Задание для 1-й группы учащихся с низким уровнем обученности. Решите задачу. Составьте задачу, обратную данной, и решите ее.

Задание для 2-й группы учащихся с ниже среднего уровнем обученности. Решите задачу. Придумайте задачу с другим сюжетом, но чтобы решение при этом не изменилось.

Задание для 3-й группы учащихся со средним уровнем обученности. Решите задачу. Измените вопрос к задаче так, чтобы она решалась в четыре действия.

Информация о работе Формирование познавательных логических учебных действий у младших школьников путем решения текстовых задач