Автор работы: Пользователь скрыл имя, 16 Декабря 2014 в 12:43, курсовая работа
Порошковая металлургия находит широчайшее применение для различных условий работы деталей изделий. Методами порошковой металлургии изготовляют изделия, имеющие специальные свойства: антифрикционные детали узлом трения приборов и машин (втулки, вкладыши, опорные шайбы и т.д.), конструкционные детали (шестерни, кулачки и др.), фрикционные детали (диски, колодки и др.), инструментальные материалы (резцы, пластины резцов, сверла и др.), электротехнические детали (контакты, магниты, ферриты, электрощетки и др.) для электронной и радиотехнической промышленности, композиционные (жаропрочные и др.) материалы
Введение…………………………………………………………………………..…..3
Глава 1. История развития порошковой металлургии……………………………...4
Глава 2. Производство металлических порошков и их свойства…………….……8
Глава 3. Изделия порошковой металлургии и их свойства
3.1. Металлокерамические подшибники……………………...…..………...31
3.2. Пористые материалы и возможности их применения в промышленности………………………………..……………………………………….…...32
Глава 4. Перспектива развития порошковой металлургии………………………34
Заключение……………………………………..…………………………………...34
Список использованной литературы………………………………………………44
Министерство общего и профессионального образования
Российской Федерации.
Башкирский государственный университет.
Экономический факультет.
Кафедра экономики
КУРСОВАЯ РАБОТА
по предмету
системы технологий и инновации
на тему:
Выполнил: студент 3 курса
экономического факультета
группы 3.2. Байгужин С. Р.
3.2. Пористые материалы и возможности
их применения в промышленности………………………………..……
Введение.
Порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них или их смесей с неметаллическими порошками без расплавления основного компонента.
Из имеющихся разнообразных способов обработки металлов порошковая металлургия занимает особое место, так как позволяет получать не только изделия различных форм и назначений, но и создавать принципиально новые материалы, которые другим путем получить или очень трудно или невозможно. У таких материалов можно получить уникальные свойства, а в ряде случаев существенно повысить экономические показатели производства. При этом способе в большинстве случаев коэффициент использования материала составляет около 100%.
Порошковая металлургия находит широчайшее применение для различных условий работы деталей изделий. Методами порошковой металлургии изготовляют изделия, имеющие специальные свойства: антифрикционные детали узлом трения приборов и машин (втулки, вкладыши, опорные шайбы и т.д.), конструкционные детали (шестерни, кулачки и др.), фрикционные детали (диски, колодки и др.), инструментальные материалы (резцы, пластины резцов, сверла и др.), электротехнические детали (контакты, магниты, ферриты, электрощетки и др.) для электронной и радиотехнической промышленности, композиционные (жаропрочные и др.) материалы.
Основные преимущества использования порошковой металлургии:
- снижает затраты на дальнейшую механическую обработку, которая может быть исключена или существенно уменьшена. Получает готовое изделие точное по форме и размерам. Обеспечивает высокое качество поверхности изделия.
Глава 1. История развития порошковой металлургии.
Порошки металлов применяли и в древнейшие времена. Порошки меди, серебра и золота применяли в красках для декоративных целей в керамике, живописи во все известные времена. При раскопках найдены орудия из железа древних египтян (за 3000 лет до нашей эры), знаменитый памятник из железа в Дели относится и 300 году нашей эры. До 19 века не было известно способов получения высоких температур (около 1600-1800 С). Указанные предметы из железа были изготовлены кричным методом: сначала в горнах при температуре 1000 С, восстановлением железной руды углем получали крицу (губку), которую затем многократно проковывали в нагретом состоянии, а завершали процесс нагревом в горне для уменьшения пористости
С появлением доменного производства от крицы отказались и о порошковой металлургии забыли.
Заслуга возрождения порошковой металлургии и превращения в особый технологический метод обработки принадлежит русским ученым П.Г. Соболевскому и В.В. Любарскому, которые в 1826 г., за три года до работ англичанина Воллстана, разработали технологию прессования и спекания платинового порошка.
После первых работ П.Г. Соболевского по разработке процесса изготовления монет из порошка платины, выполненных в России в 1826 – 1827 гг. стало развиваться новое направление в науке - порошковая металлургия.
В 1924 г. Т.М. Алексеенко-Сербиным была организована первая лаборатория тугоплавких металлов на Московском электроламповом заводе, а затем создана мощная сеть научных учреждений, таких как Институт проблем материаловедения АН Украины, НИИ твердых сплавов, НИИ порошковой металлургии Белорусского политехнического института, ЦНИИЧМ им. Бардина, НИИТ Автопром, ВИЛС, ВНИИЭМ, КТБ МИ, Институт титана, Гипроникель, ИМЕТ им. Байкова и другие.
Большое участие в решении проблем порошковой металлургии принимают кафедры многих высших учебных заведений - Московского института стали и сплавов, Киевского, Новочеркасского, Нижегородского, Пермского, Ереванского политехнических институтов, Харьковского университета и т.д.
Типовая технология производства заготовки изделий методом порошковой металлургии включает четыре основные операции:
Каждая из указанных операций оказывает значительное влияние на формирование свойств готового изделия.
Глава 2. Производство металлических порошков и их свойства.
В настоящее время используют большое количество методов производства металлических порошков, что позволяет варьировать их свойства, определяет качество и экономические показатели.
Условно различают два способа изготовления металлических порошков:
1) физико-механический; 2) химико-металлургический.
При физико-механическом способе изготовления порошков превращение исходного материала в порошок происходит путём механического измельчения в твердом или жидком состоянии без изменения химического состава исходного материала. К физико-механическим способам относят дробление и размол, распыление, грануляцию и обработку резанием измельчаемого материала.
При химико-металлургическом способе изменяется химический состав или агрегатное состояние исходного материала. Основными методами при химико-металлургическом производстве порошков являются: восстановление окислов, электролиз металлов, термическая диссоциация карбонильных соединений.
Измельчение твердых материалов - уменьшение начальных размеров частиц путем разрушения их под действием внешних усилий. Различают измельчение дроблением, размолом или истиранием. Наиболее целесообразно применять механическое измельчение хрупких металлов и их сплавов таких, как кремний, сурьма, хром, марганец, ферросплавы, сплавы алюминия с магнием. Размол вязких пластичных металлов (медь, алюминий и др.) затруднен. В случае таких металлов наиболее целесообразно использование в качестве сырья отходов образующихся при обработке металлов (стружка, обрезка и др.).
При измельчении комбинируются различные виды воздействия на материал статическое – сжатие и динамическое – удар, срез – истирание, первые два вида имеют место при получении крупных частиц, второй и третий – при тонком измельчении. При дроблении твердых тел затрачиваемая энергия выполняет работу упругого и пластического деформирования и разрушения, нагрева материалов, участвующих я процессе размельчения.
Для грубого размельчения используют щековые, валковые и конусные дробилки и бегуны; при этом получают частицы размером 1-10 мм, которые являются исходным материалом для тонкого измельчения, обеспечивающего производство требуемых металлических порошков. Исходным материалом для тонкого измельчения может быть и стружка.
Окончательный размол полученного материала проводится в шаровых вращающихся, вибрационных или планетарных центробежных, вихревых и молотковых мельницах.
Шаровая мельница (рис. 1) - простейший аппарат, используется для получения относительно мелких порошков с размером частиц от нескольких единиц до десятков микрометров.
Рис 1 .Схемы движения шаров в мельнице: а – режим скольжения, б – режим перекатывания, в – режим свободного скольжения, г – режим критической скорости.
Рис 2. Схема вибрационной мельницы:1-корпус-барабан,2-
В мельницу загружают размольные тела (стальные или твердосплавные шары) и измельчаемый материал. При вращении барабана шары поднимаются вследствие трения на некоторую высоту и поэтому возможно несколько режимов измельчения:
3) свободного падения,
4) движения шаров при
В случае скольжения шаров по внутренней поверхности вращающегося барабана материал истирается между стенкой барабана и внешней поверхностью массы шаров, ведущей себя как единое целое. При увеличении частоты вращения шары поднимаются и скатываются по наклонной поверхности и измельчение происходит между поверхностями трущихся шаров. Рабочая поверхность истирания в этом случае во много раз больше и поэтому происходит более интенсивное истирание материала, чем в первом случае. При большей частоте вращения шары поднимаются до наибольшей высоты и, падая вниз (рис. 1,а), производят дробящее действие, дополняемое истиранием материала между перекатывающимися шарами. Это наиболее интенсивный размол. При дальнейшем увеличении частоты вращения шары вращаются вместе с барабаном мельницы, а измельчение при этом практически прекращается.
Информация о работе Порошковая металлургия и дальнейшая перспектива ее развития