Контрольная работа по "Материаловедению"

Автор работы: Пользователь скрыл имя, 09 Июня 2013 в 11:24, контрольная работа

Краткое описание

Назовите характерные свойства присущие металлам, чем они обусловлены.
Что называют твердыми растворами, и каких видов они бывают?
Охарактеризуйте обыкновенные серые чугуны, их состав, микроструктуру, свойства, применение и маркировку по ГОСТу.

Прикрепленные файлы: 1 файл

Контрольная по металловедению.doc

— 1.21 Мб (Скачать документ)
    1. Назовите характерные свойства присущие металлам, чем они обусловлены.

 

Химические  свойства.

В соответствии с местом, занимаемым в периодической  системе элементов, различают металлы  главных и побочных подгрупп. Металлы  главных подгрупп (подгруппы а) называются также непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s-и p-электронных оболочек. В атомах металлов побочных подгрупп (подгруппы б), называемых переходными, происходит достраивание d- и f-оболочек, в соответствии с чем их делят на d-группу и две f-группы – лантаноиды и актиноиды. В подгруппы а входят 22 металла: Li, Na, К, Rb, Cs, Fr (I a); Be, Mg, Ca, Sr, Ba, Ra (II a); Al, Ga, In, Tl (III a); Ge, Sn, Pb (IV a); Sb, Bi (V a); Po (VI a). В подгруппы б входят: 1) 33 переходных металла d-группы [Сu, Ag, Аи (I б); Zn, Cd, Hg (II б); Sc, Y, La, Ac (III 6); Ti, Zr, Hf, Ku (IV б); V, Nb, Та, элемент с Z = 105 (V б); Сr, Mo, W (VI б); Mn, Тс, Re (VII б); Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt (VIII б)]; 2) 28 металлов f-группы (14 лантаноидов и 14 актиноидов).

Электронная структура атомов некоторых d-элементов имеет ту особенность, что один из электронов внешнего уровня переходит на d-подуровень. Это происходит при достройке этого подуровня до 5 или 10 электронов. Поэтому электронная структура валентных подуровней атомов d-элементов, находящихся в одной подгруппе, не всегда одинакова. Например, Cr и Мо (подгруппа VI б) имеют внешнюю электронную структуру соответственно 3d54s1 и 4d55s1, тогда как у W она 5d46s2. В атоме Pd (подгруппа VIII 6) два внешних электрона «перешли» на соседний валентный подуровень, и для атома Pd наблюдается d10 вместо ожидаемого d8s2.

Металлам присущи многие общие химические свойства, обусловленные  слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных окислов и гидроокисей, замещение водорода в кислотах и т.д. Металлические свойства элементов можно сравнить, сопоставляя их электроотрицательность [способность атомов в молекулах (в ковалентной связи) притягивать электроны, выражена в условных единицах]; элементу присущи свойства металла тем больше, чем ниже его электроотрицательность (чем сильнее выражен электроположительный характер).

Если расположить металлы  в последовательности увеличения их нормальных потенциалов, получим так называемый ряд напряжений или ряд активностей. Рассмотрение этого ряда показывает, что по мере приближения к его концу – от щелочных и щёлочноземельных металлам к Pt и Аи – электроположительный характер членов ряда уменьшается. Металлы от Li по Na вытесняют Н2 из Н2О на холоду, а от Mg по Тl – при нагревании. Все металлы, стоящие в ряду выше Н2, вытесняют его из разбавленных кислот (на холоду или при нагревании). Металлы, стоящие ниже Н2, растворяются только в кислородных кислотах (таких, как концентрирированная H2SO4 при нагревании или HNO3), a Pt, Аи – только в царской водке (Ir нерастворим и в ней).

Металлы от Li no Na легко реагируют с О2 на холоду; последующие члены ряда соединяются с О2 только при нагревании, a Ir, Pt, Аи в прямое взаимодействие с О2 не вступают. Окислы металлов от Li no Al и от La no Zn трудно восстановимы; по мере продвижения к концу ряда восстановимость окислов увеличивается, а окислы последних его членов разлагаются на металлы и О2 уже при слабом нагревании. О прочности соединений металлов с кислородом (и др. неметаллами) можно судить и по разности их электроотрицательностей: чем она больше, тем прочнее соединение .

Физические  свойства.

Большинство металлов кристаллизуется в относительно простых структурах – кубических и гексагональных ЛГУ, соответствующих  наиболее плотной упаковке атомов (рисунок 1). Лишь небольшое число металлов имеет более сложные типы кристаллических решёток. Многие металлы в зависимости от внешних условий (температуры, давления) могут существовать в виде двух или более кристаллических модификаций.

Рисунок 1. Атомно – кристаллическое строение металлов

 

Электрические свойства. Удельная электропроводность металлов при комнатной температуре σ~10-6–10-4 ом-1 см-1, тогда как у диэлектриков, например, у серы, σ~10-17 ом-1 см-1. Промежуточные значения σ соответствуют полупроводникам. Характерным свойством металлов как проводников электрического тока является линейная зависимость между плотностью тока и напряжённостью приложенного электрического поля. Носителями тока в металлах являются электроны проводимости, обладающие высокой подвижностью. Согласно квантово-механическим представлениям, в идеальном кристалле электроны проводимости (при полном отсутствии тепловых колебаний кристаллической решётки) вообще не встречают сопротивления на своём пути. Существование у реальных металлов электросопротивления является результатом нарушения периодичности кристаллической решётки. Эти нарушения могут быть связаны как с тепловым движением атомов, так и с наличием примесных атомов, вакансий, дислокаций и др. дефектов в кристаллах. На тепловых колебаниях и дефектах (а также друг на друге) происходит рассеяние электронов.

При нагревании металлов до высоких температур наблюдается  «испарение» электронов с поверхности  металлов (термоэлектронная эмиссия). Эмиссия электронов с поверхности металлов происходит также под действием сильных электрических полей ~ 107 в/см в результате туннельного просачивания электронов через сниженный полем потенциальный барьер. В металлах наблюдаются явления фотоэлектронной эмиссии, вторичной электронной эмиссии и ионно-электронной эмиссии. Перепад температуры вызывает в металлах появление электрического тока или разности потенциалов

Тепловые свойства. Теплоёмкость металлов обусловлена как ионным остовом (решёточная теплоёмкость Ср), так и электронным газом (электронная теплоёмкость Сэ). Хотя концентрация электронов проводимости в металлах очень велика и не зависит от температуры, электронная теплоёмкость мала и у большинства металлов наблюдается только при температурах в несколько градусов кельвина. Теплопроводность металлов осуществляется главным образом электронами проводимости.

Магнитные свойства. Переходные металлы с недостроенными f- и d-электронными оболочками являются парамагнетиками. Некоторые из них при определённых температурах переходят в магнитоупорядоченное состояние. Магнитное упорядочение существенно влияет на все свойства металлов, в частности на электрические свойства: в электросопротивление вносит вклад рассеяние электронов на колебаниях магнитных моментов. Гальваномагнитные явления при этом также приобретают специфические черты.

Магнитные свойства остальных металлов определяются электронами проводимости, которые вносят вклад в диамагнитную и парамагнитную восприимчивости металлов, и диамагнитной восприимчивостью ионного состава. Магнитная восприимчивость X большинства металлов относительно мала (X ~ 10-6) и слабо зависит от температуры.

Механические  свойства. Многие металлы обладают комплексом механических свойств, обеспечивающим их широкое применение в технике, в частности в качестве конструкционных материалов. Это, в первую очередь, сочетание высокой пластичности со значит, прочностью и сопротивлением деформации, причём соотношение этих свойств может регулироваться в большом диапазоне с помощью механических и термических обработки металлов, а также получением сплавов различного состава.

Исходной характеристикой  механических свойств металлов является модуль упру гости G, определяющий сопротивление кристаллической решётки упругому деформированию и непосредственно отражающий величину, сил связи в кристалле. В монокристаллах эта величина, как и остальные механические характеристики, анизотропна и коррелирует с температурой плавления металла (например, средний модуль сдвига G изменяется от 0,18-1011 эрг/см3 для легко плавкого Na до 27•1011 эрг/см3 для тугоплавкого Re).

Сопротивление разрушению или пластической деформации идеального кристалла примерно 10-1 G. Но в реальных кристаллах эти характеристики, как и все механические свойства, определяются наличием дефектов, в первую очередь дислокация.

 

 

    1. Что называют твердыми растворами, и каких видов они бывают?

 

Чистые металлы  в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств и  поэтому редко применяются для  изготовления изделий. Некоторое применение имеет, например, медь, главным образом для изготовления проводников электричества. В большинстве случаев в технике применяют сплавы.

Металлическим сплавом называется вещество, состоящее из двух более элементов (металлов или металлов с металлоидами), или обладающее металлическими свойствами. Обычным способом приготовление сплавов является сплавление, но иногда применяют спекание, электролиз или возгонку.)

В большинстве  случаев входящие в сплав элементы в жидком состоянии полностью  растворимы друг в друге, т. е. представляют собой жидкий раствор, в котором атомы различных элементов более или менее равномерно перемешаны друг с другом (рисунок 2, а). В твердом виде сплавы способны образовывать твердые растворы, химические соединения, механические смеси (рисунок 2, б, в, г).

Рисунок  2 –  Структура и строение элементарной ячейки пространственной кристаллической  решетки различных сплавов из 2 металлов А и В: 

- атомы металла А;      - атомы металла В.


 

Твердый раствор. Во многих сплавах при переходе в твердое состояние (при кристаллизации) сохраняется однородность распределения атомов различных элементов и, следовательно, сохраняется и растворимость. Образовавшийся в этом случае кристалл (зерно) называется твердым раствором.

Микроструктура  твердого раствора в условиях равновесия представляет собой совершенно однородные и одинаковые по составу зерна и похожа на структуру чистого металла (рисунок 2, б). Твердый раствор, как и чистый металл, имеет одну кристаллическую решетку. Различие состоит только в том, что в кристаллической решетке чистого металла все узлы заняты атомами одного элемента, а в твердом растворе — атомами различных элементов, образующих этот твердый раствор.

Классификация сплавов твердых растворов

По степеням растворимости компонентов различают твердые растворы:

- с неограниченной  растворимостью компонентов;

- с ограниченной  растворимостью компонентов.

При неограниченной растворимости компонентов кристаллическая  решетка компонента растворителя по мере увеличения концентрации растворенного  компонента плавно переходит в решетку растворенного компонента, т.е. растворимость твердого раствора, полученного при любом количественном соотношении элементов.

Для образования  растворов с неограниченной растворимостью необходимы:

  1. изоморфность (однотипность) кристаллических решеток компонентов;
  2. близость атомных радиусов компонентов, которые не должны различаться более чем на 8-13%;
  3. близость физико – химических свойств подобных по строению  валентных оболочек атомов.

При ограниченной растворимости компонентов возможна концентрация растворенного вещества до определенного предела. При дальнейшем увеличении концентрации однородный твердый раствор распадается с образованием двуфазной смеси.

По характеру  распределения атомов растворенного  вещества в кристаллической решетке растворителя различают твердые растворы:

    • замещения;
    • внедрения;
    • вычитания.

В растворах  замещения в кристаллической  решетке растворителя часть его  атомов замещена атомами растворенного  компонента (рисунок 3, а). Замещение  осуществляется в случайных местах, поэтому такие растворы называют неупорядоченными твердыми растворами.

При образовании  растворов замещения периоды  решетки изменяются в зависимости  от разности атомных диаметров растворенного  элемента и растворителя. Если атом растворенного элемента больше атома

Рисунок 3 –  Расположение атомов в твёрдых растворах:

а – твёрдый раствор замещения; б - твёрдый раствор внедрения;     - атом компонента растворителя;       - атом растворенного компонента.


 

растворителя, то элементарные ячейки увеличиваются, если меньше – сокращаются. В первом приближении это изменение пропорционально концентрации растворенного компонента. Изменение параметра решетки при образовании твердых растворов важно, т.к. это определяет изменение свойств. Уменьшение параметра ведет к большему упрочнению, чем его увеличение.

Твердые растворы внедрения образуются внедрением атомов растворенного элемента в поры кристаллической  решетки растворителя (рисунок 3,б).

Образование таких  растворов возможно, если атомы растворенного  элемента имеют малые размеры. Такими являются элементы, находящиеся в начале периодической системы Менделеева – C, H, N, B. Размеры атомов превышают размеры межатомных промежутков в кристаллической решетке металла, это вызывает искажение решетки и это вызывает напряжения. Концентрация таких растворов не превышает 2-2,5%.

Твердые растворы вычитания или растворы с дефектной решеткой, образуются на базе химических соединений, при этом возможна не только замена одних атомов в узлах кристаллической решетки  другими, но и образование пустых, не занятых атомами, узлов в решетке.

К химическому  соединению добавляют один из входящих в формулу элементов, его атомы занимают нормальное положение в решетке соединения, а места атомов другого элемента остаются незанятыми.

 

 

  1. Опишите взаимодействие компонентов в диаграмме состояния Cu-Ag. Укажите основные линии диаграммы, структуру во всех областях диаграммы и превращения, в результате которых она образуется. Построить с применением правила фаз кривую охлаждения для сплава, содержащего 30% Ag. Укажите фазы, их химический состав и количественное соотношение при 800°С.

Информация о работе Контрольная работа по "Материаловедению"