Автор работы: Пользователь скрыл имя, 17 Января 2012 в 13:49, курсовая работа
Цель нашей работы состоит в том, чтобы определить план выпуска продукции для получения максимальной прибыли, чтобы сырьё II вида было израсходовано полностью. Оценить каждый из видов сырья, используемых для производства продукции.
ВЫВОД КУРСОВОГО ПРОЕКТИРОВАНИЯ.
Целью курсового проекта было решение задач линейного программирования симплекс-методом, составление алгоритма. Для нахождения оптимального решения можно пойти наиболее простым способом с точки зрения лица которое непосредственно производит решение задачи. Для более быстрого решения задачи можно воспользоваться языками программирования, что приведет к более быстрому решению задачи. Он основан на пересчёте коэффициентов в системе уравнений и целевой функции при перемене мест свободной и базисной переменных можно формализовать и свести к преобразованию симплекс-таблицы.
Симплекс-метод является вычислительной процедурой представленной в алгебраической форме. Он непосредственно применяется к общей задаче линейного программирования в стандартной форме. В данном проекте был составлен оптимальный план выпуска продукции каждого вида, обеспечивающий максимальную прибыль.
В выводе своего проектирования хочу подвести итог в целом “Решению матричных игр в смешанных стратегиях” .
Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации и т.д.
В зависимости от количества игроков различают игры двух и n игроков. Первые из них наиболее изучены. Игры трёх и более игроков менее исследованы из-за возникающих принципиальных трудностей и технических возможностей получения решения. Чем больше игроков - тем больше проблем.
По количеству стратегий игры делятся на конечные и бесконечные. Если в игре все игроки имеют конечное число возможных стратегий, то она называется конечной. Если же хотя бы один из игроков имеет бесконечное количество возможных стратегий игра называется бесконечной.
По характеру взаимодействия игры делятся на:
1) бескоалиционные:
игроки не имеют права
2) коалиционные
(кооперативные) – могут
В кооперативных играх коалиции наперёд определены.
По характеру выигрышей игры делятся на: игры с нулевой суммой (общий капитал всех игроков не меняется, а перераспределяется между игроками; сумма выигрышей всех игроков равна нулю) и игры с ненулевой суммой.
По виду функций выигрыша игры делятся на: матричные, биматричные, непрерывные, выпуклые, сепарабельные, типа дуэлей и др.
Матричная игра – это конечная игра двух игроков с нулевой суммой, в которой задаётся выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 2, столбец – номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).
Для матричных игр доказано, что любая из них имеет решение и оно может быть легко найдено путём сведения игры к задаче линейного программирования.
Биматричная игра – это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец – стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице – выигрыш игрока 2.)
Для биматричных игр также разработана теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные.
Непрерывной считается игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий. Доказано, что игры этого класса имеют решения, однако не разработано практически приемлемых методов их нахождения.
Если функция выигрышей является выпуклой,
то такая игра называется выпуклой. Для
них разработаны приемлемые методы решения,
состоящие в отыскании чистой оптимальной
стратегии (определённого числа) для одного
игрока и вероятностей применения чистых
оптимальных стратегий другого игрока.
Такая задача решается сравнительно легко.
Заключение курсового проектирования по теме задания ”Решение матричной игры в смешанных стратегиях”.
Чтобы
описать игру, необходимо сначала
выявить ее участников. Это условие
легко выполнимо, когда речь идет
об обычных играх типа шахмат, канасты
и т.п. Иначе обстоит дело с
“рыночными играми”. Здесь не всегда
просто распознать всех игроков, т.е. действующих
или потенциальных конкурентов.
Практика показывает, что не обязательно
идентифицировать всех игроков, надо обнаружить
наиболее важных. Игры охватывают, как
правило, несколько периодов, в течение
которых игроки предпринимают последовательные
или одновременные действия. Эти
действия обозначаются термином “ход”.
Действия могут быть связаны с
ценами, объемами продаж, затратами
на научные исследования и разработки
и т.д. Периоды, в течение которых
игроки делают свои ходы, называются этапами
игры. Выбранные на каждом этапе
ходы в конечном счете определяют
“платежи” (выигрыш или убыток)
каждого игрока, которые могут
выражаться в материальных ценностях
или деньгах (преимущественно
Важна и форма предоставления игры. Обычно выделяют нормальную, или матричную, форму и развернутую, заданную в виде дерева. Чтобы установить первую связь со сферой управления, игру можно описать следующим образом. Два предприятия, производящие однородную продукцию, стоят перед выбором. В одном случае они могут закрепиться на рынке благодаря установлению высокой цены, которая обеспечит им среднюю картельную прибыль ПK. При вступлении в жесткую конкурентную борьбу оба получают прибыль ПW. Если один из конкурентов устанавливает высокую цену, а второй – низкую, то последний реализует монопольную прибыль ПM, другой же несет убытки ПG. Подобная ситуация может, например, возникнуть когда обе фирмы должны объявить свою цену, которая впоследствии не может быть пересмотрена. При отсутствии жестких условий обоим предприятиям выгодно назначить низкую цену. Стратегия “низкой цены” является доминирующей для любой фирмы: вне зависимости от того, какую цену выбирает конкурирующая фирма, самой всегда предпочтительней устанавливать низкую цену. Но в таком случае перед фирмами возникает дилемма, так как прибыль ПK (которая для обоих игроков выше, чем прибыль ПW) не достигается. Стратегическая комбинация “низкие цены/низкие цены” с соответствующими платежами представляет собой равновесие Нэша, при котором ни одному из игроков невыгодно сепаратно отходить от выбранной стратегии. Подобная концепция равновесия является принципиальной при разрешении стратегических ситуаций, но при определенных обстоятельствах она все же требует усовершенствования. Что касается указанной выше дилеммы, то ее разрешение зависит, в частности, от оригинальности ходов игроков.
Информация о работе Реализация симплекс-метода в случае положительных свободных членов