Автор работы: Пользователь скрыл имя, 26 Декабря 2013 в 23:50, реферат
Существующие в настоящее время организации отличаются огромным разнообразием как по направлениям деятельности, так и по форме собственности, масштабам, другим параметрам. При этом каждая организация по-своему уникальна. Однако для управления всеми организациями применяются одинаковые принципы, методы и способы.
Введение. 3
Глава 1. Сущность моделирования в управленческой деятельности. 6
1.1. Понятие процесса моделирования. Классификация моделей. 6
1.2. Модель организации как объекта управления. 11
Глава 2. Особенности моделирования процессов управления. 16
2.1. Словесные модели. 16
2.2. Математическое моделирование. 21
2.3. Практическая модель управления. 25
Заключение. 30
Список литературы.. 32
Развитие систем измерения, анализа и управления денежными потоками, полученными от лояльности, может привести организацию к инвестициям, которые в дальнейшем обеспечат рост количества покупателей и организации в целом.
Итак, модель лояльности подробно
обоснована на словесном уровне. В
этом обосновании упоминалось
При более тщательном анализе ситуации словесных моделей, как правило, не достаточно. Необходимо применение достаточно сложных математических моделей. Так, при принятии решений в менеджменте производственных систем используются:
· модели технологических процессов (прежде всего модели контроля и управления);
· модели обеспечения качества продукции (в частности, модели оценки и контроля надежности);
· модели массового обслуживания;
· модели управления запасами (модели логистики);
· имитационные и эконометрические модели деятельности предприятия в целом, и др.
2.2. Математическое моделирование
Математическое моделирование
экономических явлений и
Впрочем, имелась и вполне практическая задача - контроль качества боеприпасов, вышедшая на первый план именно в годы второй мировой войны. Методы статистического контроля качества приносят наибольший экономический эффект среди всех экономико-математических методов управления. Только дополнительный доход от их применения в промышленности США оценивается как 0,8 % валового национального продукта США, т.е. 24 миллиардов долларов (в ценах 2003 г.).
Важная проблема - учет неопределенности.
Основное место она занимает в
вероятностно-статистических моделях
экономических и социально-
Особое место занимают имитационные системы, позволяющие отвечать на вопросы типа: «Что будет, если...?». Основа имитации (смысл которой мы будем понимать как анализ экономического явления с помощью вариантных расчетов) - это математическая модель. Имитационная система - это совокупность моделей, имитирующих протекание изучаемого процесса, объединенная со специальной системой вспомогательных программ и информационной базой, позволяющих достаточно просто и оперативно реализовать вариантные расчеты. Таким образом, под имитацией понимается численный метод проведения машинных экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительных периодов времени, при этом имитационный эксперимент состоит из следующих шести этапов:
1) формулировка задачи;
2) построение математической модели;
3) составление программы для ЭВМ;
4) оценка пригодности модели;
5) планирование эксперимента;
6) обработка результатов эксперимента.
Имитационное моделирование (simulation modelling) широко применяется в различных областях, в том числе в экономике.
Экономико-математические методы управления можно разделить на несколько групп:
· методы оптимизации;
· методы, учитывающие неопределенность, прежде всего вероятностно-статистические;
· методы построения и анализа имитационных моделей;
· методы анализа конфликтных ситуаций (теории игр).
Во всех этих группах можно выделить статическую и динамическую постановки. При наличии фактора времени используют дифференциальные уравнения и разностные методы.
Теория игр (более подходящее название - теория конфликта, или теория конфликтных ситуаций) зародилась как теория рационального поведения двух игроков с противоположными интересами. Она наиболее проста, когда каждый из них стремится минимизировать свой средний проигрыш, т.е. максимизировать свой средний выигрыш. Отсюда ясно, что теория игр склонна излишне упрощать реальное поведение в ситуации конфликта. Участники конфликта могут оценивать свой риск по иным критериям. В случае нескольких игроков возможны коалиции. Большое значение имеет устойчивость точек равновесия и коалиций.
В экономике еще 150 лет назад теория дуополии (конкуренции двух фирм) О.Курно была развита на основе соображений, которые мы сейчас относим к теории игр. Новый толчок дан классической монографией Дж. фон Неймана и О. Моргенштейна, вышедшей вскоре после второй мировой войны. В учебниках по экономике обычно разбирается «дилемма заключенного» и точка равновесия по Нэшу (ему присуждена Нобелевская премия по экономике за 1994 г.).
Моделирование процессов
управления предполагает последовательное
осуществление трех этапов исследования.
Первый - от исходной практической проблемы
до теоретической чисто
В области моделирования процессов управления, как, впрочем, и в иных областях применения математики, целесообразно выделять четверки составляющих:
ЗАДАЧА – МОДЕЛЬ - МЕТОД - УСЛОВИЯ ПРИМЕНИМОСТИ.
Задача, как правило, порождена потребностями той или иной прикладной области. Вполне понятно, что при этом происходит одна из возможных математических формализаций реальной ситуации. Например, при изучении предпочтений потребителей у экономистов - маркетологов возникает вопрос: различаются ли мнения двух групп потребителей. При математической формализации мнения потребителей в каждой группе обычно моделируются как независимые случайные выборки, т.е. как совокупности независимых одинаково распределенных случайных величин, а вопрос маркетологов переформулируется в рамках этой модели как вопрос о проверке той или иной статистической гипотезы однородности. Речь может идти об однородности характеристик, например, о проверке равенства математических ожиданий, или о полной (абсолютной однородности), т.е. о совпадении функций распределения, соответствующих двух совокупностям.
Задача может быть порождена также обобщением потребностей ряда прикладных областей. Одна и та же математическая модель может применяться для решения самых разных по своей прикладной сущности задач.
Важно подчеркнуть, что выделение перечня задач находится вне математики. Выражаясь инженерным языком, этот перечень является сутью технического задания, которое специалисты различных областей деятельности дают специалистам по математическому моделированию.
Метод, используемый в рамках
определенной математической модели -
это уже во многом, если не в основном,
дело математиков. В эконометрических
моделях речь идет, например, о методе
оценивания, о методе проверки гипотезы,
о методе доказательства той или
иной теоремы, и т.д. В первых двух
случаях алгоритмы
Ясно, что для решения той или иной задачи в рамках одной и той же принятой исследователем модели может быть предложено много методов.
Методологический анализ
- первый этап моделирования процессов
управления, да и вообще любого исследования.
Он определяет исходные постановки для
теоретической проработки, а потому
во многом и успех всего исследования.
Анализ динамики развития методов моделирования
позволяет выделить наиболее перспективные
методы. В частности, при вероятностно-
2.3. Практическая модель управления
В качестве примера конкретной модели процесса управления рассмотрим модель распределения времени между овладением знаниями и развитием умений.
Любое знание состоит частично
из «информации» («чистое знание») и
частично из «умения» («знаю как»). Умение
– это мастерство, это способность
использовать имеющиеся у вас
сведения для достижения своих целей;
умение можно еще охарактеризовать
как совокупность определенных навыков,
в конечном счете, умение – это
способность методически
Пусть x(t) – объем сведений, накопленных учащимся к моменту времени t («чистое знание»), y(t) – объем накопленных умений: умений рассуждать, решать задачи, разбираться в излагаемом преподавателем материале; u(t) – доля времени, отведенного на накопление знаний в промежутке времени (t; t+dt).
Естественно считать, что увеличение x(t+dt) – x(t) объема знаний учащегося пропорционально потраченному на это времени u(t)dt и накопленным умениям y(t). Коэффициент k1 > 0 зависит от индивидуальных особенностей учащегося.
Увеличение знаний за то
же время пропорционально
Можно управлять процессом обучения, выбирая при каждом t значение функции u(t) из отрезка [0; 1]. Рассмотрим две задачи.
1. Как возможно быстрее достигнуть заданного уровня знаний x1 и умений y1? Другими словами, как за кратчайшее время перейти из точки фазовой плоскости (x0; y0) в точку (x1; y1)?
2. Как быстрее достичь заданного объема знаний, т.е. выйти на прямую x = x1?
Двойственная задача: за
заданное время достигнуть как можно
большего объема знаний. Оптимальные
траектории движения для второй задачи
и двойственной к ней совпадают
(двойственность понимается в обычном
для математического
С помощью замены переменных z = k2x, w = k1k2y перейдем от системы (1) – (2) к более простой системе дифференциальных уравнений, не содержащей неизвестных коэффициентов
Описанная линейная замена переменных эквивалентна переходу к другим единицам измерения знаний и умений, своим для каждого учащегося.
Решения задач 1 и 2, т.е. наилучший вид управления u(t), находятся с помощью математических методов оптимального управления, а именно, с помощью принципа максимума Л.С.Понтрягина. В задаче 1 для системы (3) из этого принципа следует, что быстрейшее движение может происходить либо по горизонтальным (u = 1) и вертикальным (u = 0) прямым, либо по особому решению - параболе w = z2 (u = 1/3). При движение начинается по вертикальной прямой, при - по горизонтальной, при - по параболе. По каждой из областей {z2 > w} и {z2 < w} проходит не более одного вертикального и одного горизонтального отрезка оптимальной траектории.
Используя теорему о регулярном синтезе, можно показать, что оптимальная траектория выглядит следующим образом. Сначала надо выйти на «магистраль» - добраться до параболы w = z2 по вертикальной (u = 0) или горизонтальной (u = 1) прямой. Затем пройти основную часть пути по магистрали (u = 1/3). Если конечная точка лежит под параболой, добраться до нее по горизонтали, сойдя с магистрали. Если она лежит над параболой, заключительный участок траектории является вертикальным отрезком. В частности, в случае оптимальная траектория такова. Сначала надо выйти на магистраль – добраться по вертикальной (u = 0) прямой до параболы. Затем двигаться по магистрали (u = 1/3) от точки до точки . Наконец, по горизонтали (u = 1) выйти в конечную точку.
В задаче 2 из семейства оптимальных траекторий, ведущих из начальной точки (z0; w0) в точки луча (z1; w1), w0 < w1 < +∞, выбирается траектория, требующая минимального времени. При z1 < 2z0 оптимально w1 = z0 (z1 – z0), траектория состоит из вертикального и горизонтального отрезков. При z1 > 2z0 оптимально , траектория проходит по магистрали w = z2 от точки до точки . Чем большим объемом знаний z1 надо овладеть, тем большую долю времени надо двигаться по магистрали, отдавая при этом 2/3 времени увеличению умений и 1/3 времени – накоплению знаний.
Полученное для основного участка траектории оптимального обучения значение u = 1/3 можно интерпретировать приблизительно так: на одну лекцию должно приходиться два семинара, на 15 мин. объяснения 30 мин. решения задач. Результаты, полученные в математической модели, вполне соответствуют эмпирическим представлениям об оптимальной организации учебного процесса. Кроме того, модель определяет численные значения доли времени (1/3), идущей на повышение знаний, и доли материала (1/2), излагаемого на заключительных лекциях (без проработки на семинарах).
При движении по магистрали, т.е. в течение основного периода учебного процесса, оптимальное распределение времени между объяснениями и решением задач одно и то же для всех учащихся, независимо от индивидуальных коэффициентов k1 и k2. Этот факт устойчивости оптимального решения показывает возможность организации обучения, оптимального одновременно для всех учащихся. При этом время движения до выхода на магистраль зависит, естественно, от начального положения (x0; y0) и индивидуальных коэффициентов k1 и k2.
Таким образом, модель процесса управления обучением (1) – (2) позволила получить ряд практически полезных рекомендаций, в том числе выраженных в числовой форме. При этом не понадобилось уточнять способы измерения объемов знаний и умений, имеющихся у учащегося. Достаточно было согласиться с тем, что эти величины удовлетворяют качественным соотношениям, приводящим к уравнениям (1) и (2).
Выводы: Для управленческой деятельности, особенно в процессе принятия решений, наиболее полезны модели, которые выражаются словами или формулами, алгоритмами и иными математическими средствами. Математические методы управления можно разделить на несколько групп:
· методы оптимизации;
· методы, учитывающие неопределенность, прежде всего вероятностно-статистические;
· методы построения и анализа имитационных моделей;
· методы анализа конфликтных ситуаций (теории игр).
Математическое моделирование процессов управления предполагает последовательное осуществление трех этапов исследования: 1. от исходной практической проблемы до теоретической чисто математической задачи; 2. внутриматематическое изучение и решение этой задачи; 3. переход от математических выводов обратно к практической проблеме.