Принятие решений в условиях неопределенности

Автор работы: Пользователь скрыл имя, 12 Декабря 2012 в 16:40, диссертация

Краткое описание

Принятие решений в условиях неопределенности основано на том, что вероятности различных вариантов развития событий неизвестны. В этом случае субъект руководствуется, с одной стороны, своим рисковым предпочтением, а с другой — критерием выбора из всех альтернатив по составленной «матрице решений». Принятие решений в условиях риска основано на том, что каждой ситуации развития событий может быть задана вероятность его осуществления. Это позволяет взвесить каждое из значений эффективности и выбрать для реализации ситуацию с наименьшим уровнем риска.

Прикрепленные файлы: 1 файл

65633.rtf

— 1.12 Мб (Скачать документ)

 

 

 

 

 

 

 

 

 

Принятие решений в условиях неопределенности

 

 

 

 

Принятие решений в условиях неопределенности основано на том, что вероятности различных вариантов развития событий неизвестны. В этом случае субъект руководствуется, с одной стороны, своим рисковым предпочтением, а с другой — критерием выбора из всех альтернатив по составленной «матрице решений». Принятие решений в условиях риска основано на том, что каждой ситуации развития событий может быть задана вероятность его осуществления. Это позволяет взвесить каждое из значений эффективности и выбрать для реализации ситуацию с наименьшим уровнем риска.  

Обоснование и выбор конкретных управленческих решений, связанных с финансовыми рисками, базируется на концепции и методологии теории принятия решений. Эта теория предполагает, что решениям, связанным с риском, всегда свойственны элементы неизвестности конкретного поведения исходных параметров, которые не позволяют четко детерминировать значения конечных результатов этих решений. В зависимости от степени неизвестности предстоящего поведения исходных параметров принятия решений различают условия риска, в которых вероятность наступления отдельных событий, влияющих на конечный результат, может быть установлена с той или иной степенью точности, иусловия неопределенности, в которых из-за отсутствия необходимой информации такая вероятность не может быть установлена. Теория принятия решений в условиях риска и неопределенности основывается на следующих исходных положениях:

  1. Объект принятия решения четко детерминирован и по нему известны основные из возможных факторов риска. В финансовом менеджменте такими объектами выступают отдельная финансовая операция, конкретный вид ценных бумаг, группа взаимоисключающих реальных инвестиционных проектов и т.п.
  2. По объекту принятия решения избран показатель, который наилучшим образом характеризует эффективность этого решения. По краткосрочным финансовым операциям таким показателем избирается обычно сумма или уровень чистой прибыли, а по долгосрочным — чистый приведенный доход или внутренняя ставка доходности.
  3. По объекту принятия решения избран показатель, характеризующий уровень его риска. Финансовый риски характеризуются обычно степенью возможного отклонения ожидаемого показателя эффективности (чистой прибыли, чистого приведенного дохода и т.п.) от средней или ожидаемой его величины.
  4. Имеется конечное количество альтернатив принятия решения (конечное количество альтернативных реальных инвестиционных проектов, конкретных ценных бумаг, способов осуществления определенной финансовой операции и т.п.).
  5. Имеется конечное число ситуаций развития события под влиянием изменения факторов риска. В финансовом менеджменте каждая из таких ситуаций характеризует одно из возможных предстоящих состояний внешней финансовой среды под влиянием изменений отдельных факторов риска. Число таких ситуаций в процессе принятия решений должно быть детерминировано в диапазоне от крайне благоприятных (наиболее оптимистическая ситуация) до крайне неблагоприятных (наиболее пессимистическая ситуация).
  6. По каждому сочетанию альтернатив принятия решений и ситуаций развития события может быть определен конечный показатель эффективности решения (конкретное значение суммы чистой прибыли, чистого приведенного дохода и т.п., соответствующее данному сочетанию).
  7. По каждой из рассматриваемой ситуации возможна или невозможна оценка вероятности ее реализации. Возможность осуществления оценки вероятности разделяет всю систему принимаемых рисковых решений на ранее рассмотренные условия их обоснования («условия риска» или «условия неопределенности»).
  8. Выбор решения осуществляется по наилучшей из рассматриваемых альтернатив.

Методология принятия решения в условиях риска и неопределенности предполагает построение в процессе обоснования рисковых решений так называемой «матрицы решений», которая имеет следующий вид (табл. 1).

Таблица 1. «Матрица решений», выстраиваемая в процессе принятия решения в условиях риска или неопределенности

Варианты альтернатив принятия решений

Варианты ситуаций развития событий

С1

С2

...

С n

А1

Э11

Э12

...

Э1 n

А2

Э21

Э22

...

Э2 n

...

   

...

 

А n

Э n1

Э n2

...

Э nn


В приведенной матрице значения A1; A2;... А n характеризуют каждый из вариантов альтернатив принятия решения; значения С 1; С2;...; С n — каждый из возможных вариантов ситуации развития событий; значения Э11; Э12; Э1 n; Э21; Э22; Э2 n; Э n1; Э n2; ...; Э nn — конкретный уровень эффективности решения, соответствующий определенной альтернативе при определенной ситуации.

Приведенная матрица решений характеризует один из ее видов, обозначаемый как«матрица выигрышей», так как она рассматривает показатель эффективности. Возможно также построение матрицы решений и другого вида, обозначаемого как «матрица рисков», в котором вместо показателя эффективности используется показатель финансовых потерь, соответствующих определенным сочетаниям альтернатив принятия решений и возможным ситуациям развития событий.

На основе указанной матрицы рассчитывается наилучшее из альтернативных решений по избранному критерию. Методика этого расчета дифференцируется для условий риска и условий неопределенности.

I. Принятие решений в условиях риска основано на том, что каждой возможной ситуации развития событий может быть задана определенная вероятность его осуществления. Это позволяет взвесить каждое из конкретных значений эффективности по отдельным альтернативам на значение вероятности и получить на этой основе интегральный показатель уровня риска, соответствующий каждой из альтернатив принятия решений. Сравнение этого интегрального показателя по отдельным альтернативам позволяет избрать для реализации ту из них, которая приводит к избранной цели (заданному показателю эффективности) с наименьшим уровнем риска.

II. Принятие решений в условиях неопределенности основано на том, что вероятности различных вариантов ситуаций развития событий субъекту, принимающему рисковое решение, неизвестны. В этом случае при выборе альтернативы принимаемого решения субъект руководствуется, с одной стороны, своим рисковым предпочтением, а с другой — соответствующим критерием выбора из всех альтернатив по составленной им «матрице решений».

Основные критерии, используемые в процессе принятия решений в условиях неопределенности, представлены ниже.

  1. критерий Вальда
  2. критерий «максимакса»
  3. критерий Гурвица
  4. критерий Сэвиджа

Основное различие между этими критериями определяется стратегией лица, принимающего решения. Критерий Лапласа основан на более оптимистичных предположениях, чем минимаксный критерий. Критерий Гурвица можно использовать при различных подходах – от наиболее оптимистичного до наиболее пессимистичного. Все эти критерии отражают субъективную оценку ситуации, в которой приходится принимать решение. При этом не существует общих правил применимости того или иного критерия, так как поведение лица, принимающего решение в условиях неопределенности, является наиболее важным фактором при выборе подходящего критерия.

Перечисленные критерии базируются на том, что лицу, принимающему решение, не противостоит разумный противник. В случае, когда в роли противника выступает природа, нет оснований предполагать, что она стремится причинить вред лицу, принимающему решение.

При наличии разумного противника, интересы которого противоречат интересам лица, принимающего решения (например, в военных действиях противоборствующие армии являются разумными противниками), для построения подходящего критерия требуется специальный подход. Эти вопросы рассматриваются в теории игр.

Данные, необходимые для принятия решений в условиях неопределенности, задаются в форме матрицы, строки которой соответствуют действиям, а столбцы - возможным состояниям системы.

Каждому действию и каждому возможному состоянию системы соответствует результат (исход), определяющий выигрыш (или потери) при выборе данного действия и реализации данного состояния.

Пусть ai (i=1,2, ... , m)

и q j представляет возможное состояние j ( j=1,2, ... ,n),

n ( ai , q j ) - описывает соответствующий результат.

В общем случае n ( ai , q j ) может быть непрерывной функцией ai и q j .

В дискретном случае указанные данные представляются в форме матрицы.

 

 


 

q 1

q 2

...

q n

a1

n (a1 ,q 1)

n (a1 ,q 2)

...

n (a1 ,q n)

a2

n (a2 ,q 1)

n (a2 ,q 2)

...

n (a2 ,q n)

...

...

...

...

...

am

n (am ,q 1)

n (am ,q 2)

...

n (am ,q n)




 

 

 

 

 

Критерий Лапласа

 

Этот критерий опирается на известный принцип недостаточного обоснования. Поскольку вероятности состояний q 1, q 2, ... ,q n не известны, необходимая информация для вывода, что эти вероятности различны, отсутствует. В противном случае можно было бы определить эти вероятности и ситуацию уже не следовало рассматривать как принятие решения в условиях неопределенности. Так как принцип недостаточного обоснования утверждает противоположное, то состояния q 1, q 2, ...,q n имеют равные вероятности. Если согласиться с приведенными доводами, то исходную задачу можно рассматривать как задачу принятия решений в условиях риска, когда выбирается действие ai , дающее ожидаемый выигрыш.

Другими словами, находится действие ai* , соответствующее

- вероятность реализации состояния q j ( j=1,2, ... ,n),

Пример. Одно из предприятий должно определить уровень предложения услуг так, чтобы удовлетворить потребности клиентов в течение предстоящих праздников. Точное число клиентов не известно, но ожидается, что оно может принять одно из четырех значений: 200, 250, 300 или 350 клиентов. Для каждого из этих возможных значений существует наилучший уровень предложения (с точки зрения возможных затрат). Отклонения от этих уровней приводят к дополнительным затратам либо из-за превышения предложения над спросом, либо из-за неполного удовлетворения спроса.

В таблице приведены потери в тысячах долларов.

 

Клиенты

 

Уровень предложения

 

q 1

q 2

q 3

q 4

a1

5

10

18

25

a2

8

7

8

23

a3

21

18

12

21

a4

30

22

19

15


 

Принцип Лапласа предполагает, что q 1, q 2, q 3, q 4 равновероятны.

Следовательно, P{q =q j } =1/4, j= 1, 2, 3, 4, и ожидаемые потери при различных действиях a1, a2, a3, a4 составляют

E{a1}= (1/4)(5+10+18+25)=14,5

E{a2}= (1/4)(8+7+8+23)=11,5

E{a3}= (1/4)(21+18+12+21)=18,0

E{a4}= (1/4)(30+22+19+15)=21,5

Таким образом, наилучшим уровнем предложения в соответствии с критерием Лапласа будет a2.

 

Минимаксный (максиминный) критерий

 

Является наиболее осторожным, поскольку основывается на выборе наилучшей из наихудших возможностей. Если результат n (ai , q j) представляет потери лица, принимающего решение, для действия ai наибольшие потери независимо от возможного состояния q j будут равны

 

 

В этом случае критерий называется максиминным.

Пример. Рассмотрим предыдущий пример. Так как n (ai , q j) представляют потери, применим минимаксный критерий. Результаты вычислений представим в виде следующей таблицы.

 

 

q 1

q 2

q 3

q 4

a1

5

10

18

25

25

a2

8

7

8

23

23

a3

21

18

12

21

21

a4

30

22

19

15

30


 

Минимаксной стратегией будет a3 .

Подходы к учету неопределенности при описании рисков. В теории принятия решений в настоящее время при компьютерном и математическом моделировании для описания неопределенностей чаще всего используют такие математические средства, как:

- вероятностно-статистические методы,

- методы статистики нечисловых данных, в том числе интервальной статистики и интервальной математики, а также методы теории нечеткости,

- методы теории конфликтов (теории игр).

Они применяются в имитационных, эконометрических, экономико-математических моделях, реализованных обычно в виде программных продуктов.

Некоторые виды неопределенностей связаны с безразличными к организации силами - природными (погодные условия) или общественными (смена правительства). Если явление достаточно часто повторяется, то его естественно описывать в вероятностных терминах. Так, прогноз урожайности зерновых вполне естественно вести в вероятностных терминах. Если событие единично, то вероятностное описание вызывает внутренний протест, поскольку частотная интерпретация вероятности невозможна. Так, для описания неопределенности, связанной с исходами выборов или со сменой правительства, лучше использовать методы теории нечеткости, в частности, интервальной математики (интервал – удобный частный случай описания нечеткого множества). Наконец, если неопределенность связана с активными действиями соперников или партнеров, целесообразно применять методы анализа конфликтных ситуаций, т.е. методы теории игр, прежде всего антагонистических игр, но иногда полезны и более новые методы кооперативных игр, нацеленных на получение устойчивого компромисса.

Информация о работе Принятие решений в условиях неопределенности