Патофизиология

Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 19:36, доклад

Краткое описание

Патогенные факторы, вызывающие повреждения нервной системы, имеют экзогенную либо эндогенную природу. Экзогенные патогенные факторы могут быть нейротропными, поражающими определенные структуры нервной системы, т.е. специфическими. Неспецифические этиологические факторы повреждают не только нервную, но и другие ткани. К экзогенным факторам, поражающим нервную систему, относятся биологические возбудители: вирусы (бешенство, полиомиелит), микробы (лепра), растительные токсины (стрихнин, кураре), микробные токсины (ботулинический, столбнячный), спирты (этиловый, метиловый), ядохимикалии (хлорофос), отравляющие вещества и др. Специфическим для человека патогенным фактором является слово. Оно может вызвать нарушения психической деятельности, поведения, расстройства различных функций по условно-рефлекторному механизму.

Прикрепленные файлы: 1 файл

ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ.docx

— 127.84 Кб (Скачать документ)

Дополнительные факторы  нейродистрофического процесса. К факторам, участвующим в развитии нейродистрофического процесса, относятся: сосудистые изменения в тканях, нарушения гемо- и лимфомикроциркуляции, патологическая проницаемость сосудистой стенки, нарушение транспорта в клетку питательных и пластических веществ. Важным патогенетическим звеном является возникновение в дистрофической ткани новых антигенов в результате изменений генетического аппарата и синтеза белка, образуются антитела к тканевым антигенам, возникают аутоиммунный и воспалительный процессы. В указанный комплекс патологических процессов входят также вторичное инфицирование язвы, развитие инфекционных повреждений и воспаления. В целом нейродистрофические поражения тканей имеют сложный многофакторный патогенез (Н.Н. Зайко).

Генерализованный нейродистрофический  процесс. При повреждениях нервной системы могут возникать генерализованные формы нейродистрофического процесса. Одна из них проявляется в виде поражения десен (язвы, афтозный стоматит), выпадения зубов, кровоизлияния в легких, эрозии слизистой и кровоизлияния в желудке (чаще в области привратника), в кишечнике, особенно в

области буагиниевой заслонки, в прямой кишке. Поскольку такие изменения возникают сравнительно регулярно и могут иметь место при разных хронических нервных повреждениях, они получили название стандартной формы нервной дистрофии (А.Д. Сперанский). Часто указанные изменения возникают при повреждении высших вегетативных центров, в частности, гипоталамуса (при травмах, опухолях), в эксперименте при наложении стеклянного шарика на турецкое седло.

 

Все нервы (двигательные, чувствительные, вегетативные), какую бы функцию  они ни выполняли, являются одновременно трофическими (А.Д. Сперанский). Нарушения  нервной трофики составляют важное патогенетическое звено болезней нервной  системы и нервной регуляции  соматических органов, поэтому коррекция  трофических изменений является необходимой частью комплексной  патогенетической терапии.

21.3. ПАТОЛОГИЯ НЕЙРОНА

21.3.1. Нарушение проведения  возбуждения

Распространение возбуждения по нервному волокну обеспечивается последовательным сочетанием одних и тех же процессов: деполяризацией участка мембраны волокна, входом в этом участке Na+, деполяризацией соседнего участка мембраны, входом в этом участке Na+ и т.д.

При недостаточном входе Na+ нарушается генерация потенциала действия, и проведение прекращается. Такой эффект имеет место при блокаде Na+-каналов местными анестетиками (новокаин, лидокаин и др.) и рядом других химических агентов. Специфическим блокатором Na+-каналов является тетродотоксин - яд, вырабатывающийся во внутренних органах рыбы фугу.

Исходная разность концентрации Na+ и Ка+ по обе стороны мембраны (Na+ в 10-15 раз больше снаружи, К+ в 50-70 раз больше внутри), необходимая для генерации потенциала действия, восстанавливается и поддерживается активным транспортом ионов Na+/K+-насосом. Он выкачивает наружу Na+, поступивший внутрь (в цитоплазму) во время возбуждения, в обмен на наружный К+, который вышел наружу во время возбуждения. Деятельность насоса, роль которого выполняет встроенная в мембрану Na+/К+- АТФаза, обеспечивается энергией, высвобождающейся при рас-

щеплении АТФ. Дефицит энергии ведет к нарушению работы насоса, что обусловливает неспособность мембраны генерировать потенциал действия и проводить возбуждение. Такой эффект вызывают разобщители окислительного фосфорилирования (например, динитрофенол) и другие метаболические яды, а также ишемия и длительное охлаждение участка нерва. Ингибируют насос и как следствие этого нарушают проводимость сердечные гликозиды (например, уабаин, строфантин) в больших дозах.

 

Проведение возбуждения по аксону нарушается при различных видах  патологии периферических нервов и  нервных волокон в ЦНС - при  воспалительных процессах, рубцовых изменениях нерва, сдавлении нервных волокон, демиелинизации волокон (аллергические процессы, рассеянный склероз), ожогах и др. Проведение возбуждения прекращается при дегенерации аксона.

21.3.2. Нарушение аксонального  транспорта и дендритов

Аксональный транспорт из тела нейрона  в нервное окончание и из нервного окончания в тело нейрона осуществляется при участии нейрофиламентов, микротрубочек и контрактильных актино- и миозиноподобных белков, сокращение которых зависит от содержания Са2+ в среде и от энергии расщепления АТФ. Вещества, разрушающие микротрубочки и нейрофиламенты (колхицин, винбластин и др.), недостаток АТФ, метаболические яды, создающие дефицит энергии (динитрофенол, цианиды), нарушают аксоток. Аксональный транспорт страдает при дегенерации аксона, вызываемой недостатком витамина В6 и витамина B1 (болезнь берибери), промышленными ядами (акриламидом, гексахлорофосом), солями тяжелых металлов (свинца), фармакологическими препаратами (дисульфирамом), алкоголем, при диабете, сдавлении нервов и дистрофических повреждениях нейрона. При перерыве аксона возникает уоллеровская дегенерация (распад) его периферической части и ретроградная дегенерация центральной части. Эти процессы связаны с нарушением трофики в обеих частях аксона.

Расстройства аксонального транспорта трофогенов и веществ, необходимых для образования и выделения медиаторов нервным окончанием, обусловливают развитие дистрофических изменений нейронов и иннервируемых тканей и нарушение синаптических процессов. Распространение с аксональным транспортом патотрофогенов, антител к нервной ткани и к нейромедиаторам приводит

 

к вовлечению в патологический процесс  нейронов в других отделах ЦНС.

Дендриты и их шипики являются самыми ранимыми структурами нейрона. При старении шипики и ветви дендритов редуцируются, при некоторых дегенеративных и атрофических заболеваниях мозга (старческое слабоумие, болезнь Альцгеймера) они исчезают. Дендрошипиковый аппарат страдает при гипоксии, ишемии, сотрясении мозга, стрессорных и невротизирующих воздействиях.

21.3.3. Патология структурных  элементов нейронов

Значительную роль в патологии  нейрона играют нарушения внутриклеточного структурного гомеостаза. В норме  процессы изнашивания и распада  внутриклеточных структур и нейрональных мембран уравновешиваются процессами их обновления и регенерации. Совокупность этих процессов составляет динамический структурный гомеостаз.

Повреждения как клеточной (цитоплазматической), так и внутриклеточных  мембран возникают при различных патогенных воздействиях и сами являются причиной дальнейшей патологии нейрона.

Усиленное перекисное окисление липидов (ПОЛ) нейрональных мембран оказывает влияние не только на мембранные, но и на другие внутриклеточные процессы.

Практически нет патологического  процесса в нервной системе, при  котором не возникало бы усиленного ПОЛ. Оно имеет место при эпилепсии, эндогенных психозах (например, шизофрении, маниакально-депрессивном синдроме), при  неврозах, стрессах и повреждениях, при ишемии, хронической гипоксии, функциональных перегрузках нейронов и пр. С ним связана дальнейшая гиперактивация нейронов.

Вследствие увеличения проницаемости  мембран происходит выход из нейрона  различных веществ, в том числе  антигенов, которые вызывают образование  антинейрональных антител, что приводит к развитию аутоиммунного процесса. Нарушение барьерных свойств мембран обусловливает возрастание тока ионов Са2+ и Na+ в нейрон и К+ - из нейрона; эти процессы в сочетании с недостаточностью энергозависимых Na+-, K+- и Са2+-насосов (их деятельность изменяется также под влиянием усиленного ПОЛ) приводят к частичной деполяризации мембраны. Увеличенный вход Ca2+ не

 

только вызывает гиперактивацию нейрона, но и при чрезмерном его содержании в клетке ведет к патологическим изменениям метаболизма и внутриклеточным повреждениям (см. главу 3).

Нормализация перекисного окисления  липидов и стабилизация нейрональных мембран должны быть частью комплексной патогенетической терапии различных форм патологии нервной системы.

Для жизнедеятельности нейрона, который  как высокодифференцированная клетка не способен митотически делиться, внутриклеточная регенерация является единственным способом структурного обновления нейронов и поддержания их целостности. К ней относятся синтез белков, образование внутриклеточных органелл, митохондрий, мембранных структур, рецепторов, рост нервных отростков (аксоны, дендриты, дендритные шипики) и др.

Процессы внутриклеточной регенерации  требуют высокого энергетического  и трофического обеспечения и  полноценного метаболизма клетки. При  повреждениях нейрона, возникновении  энергетического и трофического дефицита, нарушениях деятельности генома страдает внутриклеточная регенерация, падает пластический потенциал клетки, распад внутриклеточных структур не уравновешивается ими.

21.3.4. Энергетический дефицит

Потребность нейронов в энергообеспечении - самая высокая из всех клеток организма, и нарушение энергообеспечения  является одной из распространенных причин патологии нейрона. Энергетический дефицит может быть первичным - при действии метаболических ядов (например, динитрофенола, цианидов) либо вторичным - при различных повреждениях, нарушениях кровообращения, шоке, отеке, общих судорогах, усиленной функциональной нагрузке и др. Дефицит энергии относится к разряду типовых внутриклеточных патологических процессов (см. главу 3).

Главными условиями развития энергетического  дефицита являются недостаток кислорода  и значительное повреждение митохондрий, в которых синтезируется основной носитель энергии - АТФ. Причиной дефицита энергии может быть также недостаток субстрата окисления, в частности  глюкозы, которая является для мозга  основным субстратом окисления. Нейроны  коры не имеют запасов глюкозы  и потребляют ее непосредственно  из крови (глюкоза свободно проходит ГЭБ), поэтому они особенно чувстви-

 

тельны к гипогликемии. Мозг потребляет около 20% от всей находящейся в крови глюкозы. Инсулиновые шоки, применяемые для лечения некоторых психозов, связаны с глубокой гипогликемией и протекают с потерей сознания и нередко с судорогами. При ряде патологических состояний (травматический шок, кровопотеря) мозг может дольше обеспечиваться кислородом и глюкозой благодаря перераспределению крови и уменьшению их потребления другими тканями. Для быстрейшего восстановления деятельности мозга после общих судорог необходим достаточно высокий уровень глюкозы в крови. Энергетический дефицит усугубляется нарушением цикла Кребса.

При глубоком нарушении окислительного фосфорилирования и синтеза макроэргов источником энергии становится анаэробный гликолиз. Он имеет характер компенсаторного механизма, однако его эффект не может восполнить дефицит энергии, а нарастающее увеличение содержания молочной кислоты в мозгу оказывает отрицательное влияние на деятельность нейронов и усугубляет отек мозга.

21.3.5. Эффекты ишемии и  гипоксии

В связи с высокой потребностью в энергии нейроны ЦНС нуждаются  в значительном кислородном обеспечении. Нейрон коры головного мозга потребляет 250-450 мкл О2/мин (для сравнения - глиоцит и гепатоцит потребляют до 60 мкл О2). Снижение потребления кислорода мозгом всего лишь на 20% может вызвать потерю сознания у человека. Исчезновение импульсной активности нейронов возникает уже в первые десятки секунд ишемии мозга. Через 5-6 мин после начала асфиксии наступает глубокое и нередко необратимое нарушение деятельности мозга. Гибель нейрона при ишемии является результатом осуществления комплекса взаимосвязанных внутриклеточных процессов (рис. 21-5).

При аноксии головного мозга  в первую очередь страдает кора. Гибель всего мозга означает «мозговую  смерть», которая проявляется в  полном исчезновении биоэлектрической активности. Филогенетически более  старые структуры ЦНС (спинной мозг, ствол головного мозга) менее  чувствительны к асфиксии, чем  молодые (подкорка и особенно кора). Поэтому при запоздалом оживлении  организма может наступить декортикация.

 

Рис. 21-5. Комплекс внутриклеточных процессов, возникающих при ишемии и вызывающих дегенерацию и гибель мембран

Весьма чувствительны к аноксии  тормозные механизмы. Одним из следствий  этого является растормаживание  неповрежденных структур ЦНС. На ранних стадиях ишемии, когда нейроны  мозга еще способны давать реакцию, они могут гиперактивироваться. На поздних стадиях ишемии гиперактивация нейронов сменяется их инактивацией.

С поступлением Na+ в нейрон связана первая, острая фаза поражения нейрона. Возрастание концентрации Na+ в цитозоле нейрона приводит к повышению осмолярности, что обусловливает вход воды в нейрон и его набухание. В дальнейшем повышение осмолярности нейрона связано также с накоплением в нем Са2+, молочной кислоты, неорганического фосфора. С входом Са2+ в нейрон связана вторая фаза повреждения нейрона. Увеличение количества Са2+, поступающего в нейрон, обусловливается активацией глутаматных рецепторов в связи с усиленным выделением глутамата нервными окончаниями при ишемии. Антагонисты глутаматных рецепторов и антагонисты Са2+ (блокаторы Са2+-каналов) способ-

ны предотвратить ишемическую дегенерацию нейронов и оказать лечебный эффект.

Повреждение нейрона происходит не только во время ишемии, но и в  связи с реперфузией мозга и возобновлением циркуляции крови. Именно они могут представлять главную опасность. Большую роль в реперфузионных постишемических повреждениях играют: новая волна поступления Са2+ в нейрон, ПОЛ (перекисное окисление липидов) и процессы свободнорадикального окисления, усиленные в связи с действием поступающего кислорода. Увеличивается содержание молочной кислоты из-за поступления глюкозы в условиях нарушения окислительного фосфорилирования и возросшего анаэробного гликолиза. Происходит отек мозга за счет поступления воды из крови при возобновлении циркуляции.

 

В сложный комплекс Са2+-индуцируемых внутриклеточных повреждений входят: альтерация внутриклеточных белков, усиленный фосфолипазный гидролиз и протеолиз, разрушение внутриклеточных структур, повреждение цитоплазматической и внутриклеточных мембран, набухание нейронов, нарушение деятельности генома. При критическом возрастании интенсивности этих процессов происходят необратимые повреждения и гибель нейрона, возникает так называемая кальциевая смерть1.

Информация о работе Патофизиология