Автор работы: Пользователь скрыл имя, 15 Января 2014 в 01:04, реферат
Цитокины — самая многочисленная, наиболее важная и универсальная в функциональном отношении группа гуморальных факторов системы иммунитета, в равной степени важная для реализации врожденного и адаптивного иммунитета. Цитокины участвуют во многих процессах; их нельзя назвать факторами, относящимися исключительно к иммунной системе, поскольку они играют важную роль в кроветворении, тканевом гомеостазе, межсистемной передаче сигналов.
1. Общая характеристика цитокинов
2. Рецепторы для цитокинов
3. Внутриклеточная передача сигнала при действии цитокинов
4. Особенности функционирования системы цитокинов
5. Противовоспалительные цитокины
6. Методы изучения цитокинов
Провоспалительные цитокины
Цитокины — ключевые гуморальные факторы воспаления, необходимые для реализации защитных функций врожденного иммунитета. В развитии воспаления участвуют три группы цитокинов — воспалительные, или про- воспалительные цитокины, хемокины, колониестимулирующие факторы, а также функционально связанные факторы IL-12 и IFNγ. Цитокинам также принадлежит важная роль в подавлении и сдерживании воспалительной реакции. К противовоспалительным цитокинам относят трансформирующий фактор роста β (TGFβ), IL-10; часто роль противовоспалительного фактора играет IL-4.
Выделяют 3 основных представителя группы провоспалительных цитокинов — TNFa, IL-1 и IL-6; относительно недавно к ним были добавлены IL-17 и IL-18. Эти цитокины продуцируются в основном активированными моноцитами и макрофагами преимущественно в очаге воспаления. Провоспалительные цитокины могут вырабатываться также нейтрофилами, дендритными клетками, активированными В-, NK- и Т-лимфоцитами. В очаге проникновения патогенов цитокины первыми начинают синтезировать немногочисленные местные воспалительные макрофаги. Затем в процессе эмиграции лейкоцитов из кровотока численность клеток-продуцентов возрастает и их спектр расширяется. В частности, к синтезу провоспалительных цитокинов подключаются стимулированные продуктами микроорганизмов и факторами воспаления эпителиальные, эндотелиальные, синовиальные, глиальные клетки, фибробласты. Гены цитокинов относят к индуцибельным. Естественные индукторы их экспрессии — патогены и их продукты, действующие через TLR и другие патогенраспознающие рецепторы. Классический индуктор — бактериальный ЛПС. В то же время некоторые провоспалительные цитокины (IL-1, TNFa) сами способны индуцировать синтез провоспалительных цитокинов.
Провоспалительные цитокины синтезируются и секретируются достаточно быстро, хотя кинетика синтеза различных цитокинов этой группы неодинакова. В типичных случаях (быстрый вариант) экспрессию их мРНК отмечают через 15—30 мин после индукции, появление белкового продукта в цитоплазме — через 30—60 мин, содержание его во внеклеточной среде достигает максимума через 3—4 ч. Синтез цитокинов конкретной клеткой продолжается довольно непродолжительное время — обычно немногим больше суток. Не весь синтезируемый материал секретируется. Некоторое количество цитокинов экспрессируется на поверхности клетки или содержится в цитоплазматических гранулах. Выброс гранул могут вызывать те же активирующие сигналы, что и продукция цитокинов. Это обеспечивает быстрое (в течение 20 мин) поступление цитокинов в очаг поражения.
Провоспалительные цитокины выполняют многие функции. Основная их роль — «организация» воспалительной реакции . Один из наиболее важных и ранних эффектов провоспалительных цитокинов — усиление экспрессии молекул адгезии на эндотелиальных клетках, а также на самих лейкоцитах, что приводит к миграции в очаг воспаления лейкоцитов из кровяного русла . Кроме того, цитокины индуцируют усиление кислородного метаболизма клеток, экспрессии ими рецепторов для цитокинов и других факторов воспаления, стимуляцию выработки цитокинов, бактерицидных пептидов и т.д. Провоспалительные цитокины оказывают преимущественно местное действие. Попадание избыточно секретируемых провоспалительных цитокинов в циркуляцию способствует проявлению системных эффектов воспаления, а также стимулирует выработку цитокинов клетками, отдаленными от очага воспаления. На системном уровне провоспалительные цитокины стимулируют продукцию белков острой фазы, вызывают повышение температуры тела, действуют на
Внутриклеточная передача сигн
эндокринную и нервную системы, а в высоких дозах приводят к развитию патологических эффектов (плоть до шока, подобного септическому).
IL-1 — собирательное обозначение семейства белков, включающего более 11 молекул. Функция большинства из них неизвестна, однако 5 молекул — IL-1a (по современной классификации — IL-1F1), IL-1β (IL-1F2), IL-1RA (IL-1F3), IL-18 (IL-1F4) и IL-33 (IL-1F11) — активные цитокины.
IL-1a и IL-1β традиционно называют IL-1, поскольку они взаимодействуют с одним и тем же рецептором и их эффекты неразличимы. Гены этих цитокинов локализованы в длинном плече хромосомы 2 человека. Гомология между ними на нуклеотидном уровне составляет 45%, на аминокислотном — 26%. Обе молекулы имеют р-складчатую структуру: они содержат 6 пар анти- параллельных р-слоев и имеют форму трилистника. Клетки синтезируют молекулу-предшественник с молекулярной массой около 30 кДа, лишенную сигнальных пептидов, что свидетельствует о необычном пути процессинга молекулы IL-1. Молекулярная масса зрелых белков — около 18 кДа.
IL-1a существует в трех формах — внутриклеточной (растворимая молекула присутствует в цитозоле и выполняет регуляторные функции), мембранной (молекула доставляется на поверхность клетки за счет механизма, аналогичного рециклингу рецепторов и заякоривается в мембране) и секретиуремой (молекула секретируется в первоначальном виде, но подвергается процессингу — расщеплению внеклеточными протеазами с образованием активного цитокина массой 18 кДа). Основной вариант молекулы IL-1a у человека — мембранный. В такой форме действие цитокина более выражено, но проявляется только локально.
Процессинг IL-1β происходит внутри клетки с участием специализированного фермента — IL-1-конвертазы (каспазы 1), находящегося в лизосомах.
Активация этого фермента осуществляется в составе инфламмосомы — временной надмолекулярной структуры, включающей, кроме неактивной каспазы 1, внутриклеточные рецепторы семейства NLR — NOD1, NOD2, IPAF и др. Для активации каспазы 1 необходимо распознавание названными рецепторами PAMP, что вызвает развитие активационного сигнала. В результате происходит образование транскрипционного фактора NF-kB и индукция провоспалительных генов, а также активация инфламмосомы и содержащейся в ней каспазы 1. Активированный фермент расщепляет молекулу-предшественницу IL-1β, и образовавшийся зрелый цитокин с молекулярной массой 18 кДа секретируется клеткой.
IL-1a, IL-1β, а также рецепторный антагонист IL-1 имеют общие рецепторы, экспрессируемые спонтанно на многих типах клеток. При активации клеток на них возрастает число мембранных рецепторов для IL-1. Основной из них — IL-1RI — во внеклеточной части содержит 3 иммуноглобулиноподобных домена. Его внутриклеточная часть представляет TIR- домен, структурно сходный с аналогичными доменами TLR и запускающий те же сигнальные пути. Число этих рецепторов невелико (200—300 на клетку), но они обладают высоким сродством к IL-1 (Kd равен 10-11 М). Другой рецептор — IL-1RII — лишен сигнальной составляющей в цитоплазматической части, не передает сигнал и служит рецептором-ловушкой. В передаче сигнала от IL-1RI принимают участие те же факторы, что и для TLR (например, MyD88, IRAK и TRAF6), что приводит к аналогичным результатам — образованию транскрипционных факторов NF-kB и АР-1, вызывающих экспрессию одного и того же набора генов. Эти гены отвечают за синтез провоспалительных цитокинов, хемокинов, молекул адгезии, ферментов, обеспечивающих бактерицидность фагоцитов, и других генов, продукты которых участвуют в развитии воспалительной реакции. К продуктам, секрецию которых индуцируют IL-1, принадлежит и сам IL-1, т.е. в данном случае срабатывает петля положительной обратной связи.
Мишенями IL-1 потенциально могут быть любые клетки организма. В наибольшей степени его действие затрагивает эндотелиальные клетки, все виды лейкоцитов, клетки хрящевой и костной тканей, синовиальные и эпителиальные клетки, многие разновидности нервных клеток. Под влиянием IL-1 происходит индукция экспрессии больше 100 генов; с его участием реализуется больше 50 различных биологических реакций. Основные эффекты IL-1 вызывают эмиграцию лейкоцитов и активацию их фагоцитарной и бактерицидной активности. Они влияют также на свертывающую систему и сосудистый тонус, определяя особенности гемодинамики в очаге воспаления. IL-1 оказывает многоплановое действие на клетки не только врожденного, но и адаптивного иммунитета, обычно стимулируя проявления и того, и другого.
IL-1 обладает множеством системных эффектов. Он стимулирует выработку гепатоцитами белков острой фазы, при действии на центр терморегуляции гипоталамуса вызывает развитие лихорадки, участвует в развитии системных проявлений воспалительного процесса (например, в недомогании, снижении аппетита, сонливости, адинамии), что связано с действием IL-1 на ЦНС. Усиливая экспрессию рецепторов для колониестимулирующих факторов, IL-1 способствует усилению гемопоэза, с чем связано его радио- защитное действие. IL-1 стимулирует выход из костного мозга лейкоцитов, в первую очередь нейтрофилов, в том числе незрелых, что приводит к появлению при воспалении лейкоцитоза и сдвигу лейкоцитарной формулы влево (накопление незрелых форм клеток). Эффекты IL-1 влияют на вегетативные функции и даже на высшую нервную деятельность (изменение поведенческих реакций и т.д.). Мишенями IL-1 могут быть также хондроциты и остеоциты, с чем связана способность IL-1 вызывать разрушение хряща и кости при их вовлечении в воспалительный процесс и наоборот, гиперплазия патологических тканей (паннус при ревматоидном артрите). Повреждающее
действие IL-1 проявляется и при септическом шоке, повреждении суставов при ревматоидном артрите и ряде других патологических процессов.
Дублирование IL-1 эффектов бактериальных продуктов связано с потребностью в многократном воспроизведении активирующего эффекта патогенов без их диссеминации. Микроорганизмы стимулируют только клетки, находящиеся в непосредственной близости от места проникновения, прежде всего локальные макрофаги. Затем тот же эффект многократно воспроизводится молекулами IL-1β.
Рецепторный антагонист IL-1 (IL-1RA) гомологичен IL-1a и IL-1P (гомология составляет соответственно 26% и 19%). Он взаимодействует с рецепторами IL-1, но не способен передавать в клетку сигнал. В результате IL-1RA выступает в роле специфического антагониста IL-1. IL-1RA секретируют те же клетки, что и IL-1, этот процесс не требует участия каспазы 1. Выработку IL-1RA индуцируют те же факторы, что и синтез IL-1, однако некоторое его количество спонтанно продуцируют макрофаги и гепатоциты. В результате этот фактор постоянно присутствует в сыворотке крови. Вероятно, это необходимо для предотвращения негативных последствий системного действия IL-1, вырабатываемого в значительных количествах при остром воспалении. В настоящее время проводят испытания рекомбинантного IL-1RA в качестве лекарственного препарата при лечении хронических воспалительных заболеваний (ревматоидный артрит и т.д.)
IL-18 — провоспалительный цитокин, родственный IL-1β: он также синтезируется в виде предшественника, конвертируемого с участием каспазы 1; взаимодействует с рецептором, цитоплазматическая часть которого содержит домен TIR и передает сигнал, приводящий к активации NF-kB. В результате происходит активация всех провоспалительных генов, однако она выражена слабее, чем при действии IL-1. Отдельное свойство IL-18 — индукция (особенно в сочетании с IL-12) синтеза клетками IFNγ. В отсутствие IL-12 IL-18 индуцирует синтез антагониста IFNγ — IL-4 и способствует развитию аллергических реакций. Действие IL-18 ограничивает растворимый антагонист, связывающий его в жидкой фазе.
IL-33 структурно очень близок IL-18. Процессинг IL-33 тоже происходит с участием каспазы 1. Однако этот цитокин отличается от других представителей семейства IL-1 выполняемыми функциями. Своеобразие действия IL-33 значительной степени обусловлено тем, что его рецептор экспрессируется избирательно на Th2-клетках. В связи с этим IL-33 способствует секреции Th2-цитокинов IL-4, IL-5, IL-13 и развитию аллергических процессов. Он не оказывает существенного провоспалительного действия.
Фактор некроза опухоли а (ФНОa или TNFa) — представитель другого семейства иммунологически значимых белков. Это провоспалительный цитокин с широким спектром активности. TNFa имеет в-складчатую структуру. Он синтезируется в виде функционально активной мембранной молекулы про-TNFa с молекулярной массой 27 кДа, представляющей трансмембранный белок II типа (т.е. его N-концевая часть направлена внутрь клетки). В результате протеолиза во внеклеточном домене формируется растворимый мономер с молекулярной массой 17 кДа. Мономеры TNFa спонтанно формируют тример с молекулярной массой 52 кДа, представляющий основную форму этого цитокина. Тример имеет колоколовидную форму, причем субъединицы соединяются своими С-концами, содержащими по 3 участка связывания с рецептором, тогда как N-концы друг с другом не связаны и не участвуют во взаимодействии с рецепторами (а следовательно, и в выполнении цитокином своих функций). При кислых значениях рН TNFa приобретает a-спиральную структуру, что обусловливает изменение некоторых его функций, в частности, усиление цитотоксичности. TNF — прототипический член большого семейства молекул суперсемейства TNF . К нему относят лимфотоксины a и в (в растворимой форме существует только первый), а также многие мембранные молекулы, участвующие в межклеточных взаимодействиях (CD154, FasL, BAFF, OX40-L, TRAIL, APRIL, LIGHT), которые будут упоминаться далее в различных контекстах. Согласно современной номенклатуре, название членов суперсемейства состоит из сокращения TNFSF и порядкового номера (для TNFa — TNFSF2, для лимфотоксина a — TNFSF1).
Основные продуценты TNFa, как и IL-1, — моноциты и макрофаги. Его секретируют также нейтрофилы, эндотелиальные и эпителиальные клетки, эозинофилы, тучные клетки, В- и Т-лимфоциты при их вовлечении в воспалительный процесс. TNFa выявляют в кровотоке раньше других провоспалительных цитокинов — уже через 20—30 мин после индукции воспаления, что связано со «сбрасыванием» клетками мембранной формы молекулы, а возможно также с выбросом TNFa в составе содержимого гранул.
Есть 2 типа рецепторов TNF, общие для TNFa и лимфотоксина а — TNFRI (от tumor necrosis factor receptor I) и TNFRII с молекулярной массой соответственно 55 и 75 кДа. TNFRI присутствует практически на всех клетках организма, кроме эритроцитов, а TNFRII — преимущественно на клетках иммунной системы. TNFR образуют большое семейство, в которое входят молекулы, участвующие во взаимодействии клеток и индукции клеточной гибели — апоптоза.
Методы изучения цитокинов
Иммунологические методы исследования — диагностические методы исследования, основанные на специфическом взаимодействии антигенов и антител. Широко используются для лабораторной диагностики инфекционных и паразитарных болезней, определения групп крови, тканевых и опухолевых антигенов, видовой принадлежности белка, распознавания аллергии и аутоиммунных болезней, беременности, гормональных нарушений, а также в научно-исследовательской работе. Они включают серологические исследования, или серологические реакции, к которым относят обычно реакции прямого воздействия антигенов и антител сыворотки крови in vitro.
Серологические реакции различаются по способности выявлять отдельные классы антител. Реакция агглютинации, например, хорошо выявляет lgM-антитела, но менее чувствительна для определения lgG-антител. Реакции связывания комплемента и гемолиза, которые требуют участия комплемента, не выявляют антитела, не присоединяющие комплемент, например lgA-антитела и lgE-антитела. В реакции нейтрализации вирусов участвуют лишь антитела, направленные против антигенных детерминант поверхности вириона, связанных с патогенностью. Чувствительность И. м. и. превосходит все другие методы исследования антигенов и антител, в частности радиоиммунный и иммуноферментный анализы позволяют улавливать присутствие белка в количествах, измеряемых в нанограммах и даже в пикограммах. С помощью И. м. и. определяют группу и проверяют безопасность крови (гепатит В и ВИЧ-инфекция). При трансплантации тканей и органов И. м. и. позволяют определять совместимость тканей и тестировать методы подавления несовместимости. В судебной медицине используют реакцию Кастеллани для определения видовой специфичности белка и реакцию агглютинации для определения группы крови.
Иммунологические методы
широко применяют в лабораторной
диагностике инфекционных болезней.
Этиологию заболевания
Развитию иммунологических методов способствовало создание моноклональных антител, продуцируемых гибридомой, полученной в результате слияния иммунокомпетентной клетки В-лимфоцита и клетки миеломы мышей. Моноклональные антитела несут только одну химически однородную популяцию антител, комплементарную специфической детерминанте антигена, что позволяет осуществлять тонкую дифференциацию белков. Развитие И. м. и. идет как по линии совершенствования реагентов (чистоты антигенов и антител), так и по линии создания автоматизированных систем постановки реакций и их инструментального учета.