Контрольная работа по "Микробиологии"

Автор работы: Пользователь скрыл имя, 20 Апреля 2013 в 18:41, курсовая работа

Краткое описание

1. Грамположительные и Грамотрицательные бактерии, особенности строения, значение в окружающей среде и жизни человека.
2. Органические кислоты: уксусная и лимонная, получаемые микробиологическим путем. Характеристика процессов и микроорганизмов.
3. Характеристика методов дезинфекции, стерилизации, пастеризации, их использование в пищевой промышленности.
4. Микрофлора воды, оценка качества воды по микробиологическим показателям Подготовка воды перед подачей в водопроводную сеть. Значение санитарного состояния воды для пищевой промышленности.

Прикрепленные файлы: 1 файл

№242 №1007 контр Микробиология.doc

— 106.00 Кб (Скачать документ)

 

Контрольная работа

Предмет: Микробиология

Вариант № 9

 

 

1.  Грамположительные и Грамотрицательные бактерии, особенности строения, значение в окружающей среде и жизни человека

Грамположительные бактерии (обозначаются Грам (+)) — бактерии, которые, в отличие от грамотрицательных бактерий, сохраняют окраску, не обесцвечиваются при промывке при использовании окраски микроорганизмов по методу Грама.1

Большинство Грам (+) бактерий имеют однослойную  клеточную мембрану, без внешней  мембраны, присущей грамотрицательным бактериям. Исключением является тип Deinococcus-Thermus.

Большая часть патогенных для человека микроорганизмов  относится к Грам +. Шесть родов  Грам + организмов являются типичными  патогенами человека. Два из них  стрептококки и стафилококки являются кокками (шарообразными бактериями). Остальные — палочковидные и делятся далее по возможности образовывать споры. Неспорообразующие: Corynebacterium и Листерия; спорообразующие: Бациллы и Клостридии. Спорообразующие можно разделить на факультативных анаэробов Бациллы и облигатных анаэробов Клостридий.

Грамотрицательные бактерии это бактерии, которые не окрашиваются кристаллическим фиолетовым при окрашивании по Граму. В отличие от грамотрицательных, которые полностью обесцвечиваются, грамположительные бактерии сохраняют фиолетовую окраску даже после промывания обесцвечивающим растворителем (спирт). После промывания растворителем при окрашивании по Граму добавляется контрастный краситель (обычно сафранин), который окрашивает всех грамотрицательных бактерий в красный или розовый цвет. Это происходит из-за наличия внешней мембраны, препятствующей проникновению красителя внутрь клетки. Сам по себе тест полезен при классификации бактерий и разделении их на две группы относительно строения их клеточной стенки. Из-за своей более мощной и непроницаемой клеточной стенки грамотрицательные бактерии более устойчивы к антителам чем грамположительные.

Обычно  патогенность грамотрицательных бактерий связывают с определёнными компонентами их клеточных стенок, а именно, с  липополисахаридным слоем (ЛПС или эндотоксический слой). В человеческом организме ЛПС вызывает иммунный ответ, который характеризуется синтезем цитокинов и активацией иммунной системы. Обычной реакцией на синтез цитокинов является воспаление, что также может привести к увеличению количества токсичных веществ в организме хозяина.

Химический  состав клеточных стенок грамположительных  и грамотрицательных бактерий различен.2

У грамположительных  бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты (сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок — муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено. Вероятно, все эти вещества очень плотно связаны между собой.

Стенки  грамотрицательных бактерий более  сложные по химическому составу, в них содержится значительное количество липидов (жиров), связанных с белками  и сахарами в сложные комплексы  — липопротеиды и липополисахариды. Муреина в клеточных стенках  грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий. Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные.

Значение  бактерий велико. Считается, что это первые организмы, появившиеся на Земле и создавшие условия для дальнейшего развития жизни. Они участвуют в круговороте веществ в природе, в формировании плодородного слоя почвы (некоторые почвенные бактерии), поддерживают баланс углекислого газа в атмосфере. Клубеньковые бактерии, обогащая почву азотом, способствуют росту урожайности сельскохозяйственных культур. Молочнокислые бактерии, уксуснокислые бактерии и другие широко используют в биотехнологии. Гнилостные бактерии – природные санитары. В то же время гнилостные и болезнетворные бактерии наносят существенный вред. Первые вызывают порчу продуктов, кормов и др., вторые – болезни растений, инфекционные болезни животных и человека. Бактерии кишечной флоры (микрофлоры) животных и человека (а у жвачных – и желудка) участвуют в нормальном переваривании пищи у своих хозяев.

 

  1. Органические кислоты: уксусная и лимонная, получаемые микробиологическим путем. Характеристика процессов и микроорганизмов.

Органические  кислоты в системе микробного метаболизма являются продуктами деградации источника энергии и углерода. Так, лимонная, изолимонная, кетоглутаровая, янтарная, фумаровая и яблочная кислоты – интермедиаты цикла трикарбоновых кислот у большинства аэробных микроорганизмов. Уксусная кислота – продукт окисления этанола; а алифатические моно- и дикарбоновые кислоты – промежуточные продукты окисления нормальных алканов. Таким образом, возможности микроорганизмов для получения на основе их метаболизма органических кислот велики.

Лимонная  кислота (СН2 – СООН – СОНСООН – СН2СООН) – трехосновная оксикислота, широко распространенная в плодах и ягодах. Она широко применяется в пищевой промышленности при производстве кондитерских изделий и напитков, в фармацевтической, химической и текстильной промышленности. Лимонная кислота была идентифицирована в качестве продукта метаболизма плесневых грибов в 1893 г. Вемером. В настоящее время это кислота по объемам производства (свыше 350 тыс. т/г) занимает первое место среди всех органических кислот. 3

У микроорганизмов синтез лимонной кислоты реализуется в цикле дикарбоновых кислот и осуществляется в результате конденсации кислоты с четырьмя атомами углерода и двумя карбоксильными группами и кислоты с одной карбоксильной группой. Образуемая в результате гликолиза пировиноградная кислота связывается с углекислотой; синтезируемая при этом щавелевоуксусная кислота реагирует с уксусной кислотой с образованием лимонной кислоты, то есть образование лимонной кислоты включает реакции гликолиза и ряд реакций цикла Кребса. При каждом обороте цикла молекула щавелевоуксусной кислоты взаимодействует с уксусной, образуя лимонную кислоту.

Производство  лимонной кислоты методом ферментации  плесневых грибов принадлежит к  числу давних биотехнологических процессов. Первое производство было реализовано в конце XIX века. Совершенствование процесса получения лимонной кислоты тесно связано с разработкой многих фундаментальных аспектов микробиологии (борьбой с микробным загрязнением производственной культуры, оптимизацией состава питательных сред, селекцией высокопродуктивных штаммов и др.).

В промышленном производстве лимонной кислоты в  качестве продуцента в основном используют Aspergillus niger, но также применяют и A. wentii. Процесс ферментации достаточно сложен, так как лимонная кислота, является продуктом первичного метаболизма грибов, и даже незначительное выделение данного продукта в окружающую среду свидетельствует о выраженном дисбалансе клеточного метаболизма. Рост продуцента и синтез кислоты обычно регулируют составом среды (сахара, P, Mn, Fe, Zn). Сверхсинтез лимонной кислоты реализуется при больших концентрациях сахаров в среде (14–24 %) и является ответной реакцией продуцента на дефицит фосфора, а также других металлов.

Уксусная кислота (СН3СООН) – широко используется в пищевой, химической, микробиологической промышленности, в медицине. Получение уксусной кислоты из спиртосодержащих жидкостей было известно более 10 тыс. лет назад. 4 Уксуснокислое брожение основано на способности уксуснокислых бактерий окислять спирт кислородом воздуха с участием алкогольдегидрогеназы в уксусную кислоту:

 СН3СН2ОН + О2  → СН3СООН + Н2О, при этом из 1 моля этанола образуется моль уксусной кислоты, а из 1 л 12 об. % спирта получается 12.4 весовых % уксусной кислоты.

Данный процесс  могут реализовать многие бактерии, но в промышленных технологиях для получения уксуса используют уксуснокислые бактерии рода Acetobacter, интерес представляют также бактерии Gluconobacter. Большую часть уксуса получают, используя разведенный спирт. В настоящее время процесс реализуют как поверхностным, так и глубинным способом. Поверхностный режим протекает в струйных генераторах, наполненных древесной стружкой, объемом до 60 м3. Исходный питательный раствор с бактериями распыляют по поверхности стружек, и он стекает, собираясь в нижней части аппарата. После этого жидкость собирают и вновь закачивают в верхнюю часть аппарата. Процедуру повторяют 3–4 раза, в результате в течение 3-х дней до 90 % спирта трансформируется в ацетат. Этот старый способ протекает более эффективно и равномерно в генераторах Фрингса с автоматическим поддержанием температуры и принудительной подачей воздуха. По такой технологии производят до 400 млн л уксусной кислоты в год.

Современные промышленные процессы получения уксуса реализуют  в глубинной культуре в специальных аэрационных аппаратах с термостабилизацией и механической системой пеногашения. Скорость аэрации составляет 3.4 м3/м3∙ч., вращение ротора – 1500 об./мин., температура 30ºС. Исходная циркулируемая смесь содержит этанол и уксусную кислоту, соответственно, около 5 и 7 %; конечная концентрация уксуса через 1.5 суток составляет 12–13 %. Процесс – полупроточный, отливно-доливный. Каждые 30–35 часов до 60 % культуры заменяют на свежее сусло. При глубинной ферментации выход продукта на 1 м3 в 10 раз выше по сравнению с поверхностной ферментацией. К началу 90-х гг. таким способом производили до 715 млн. литров 10 % уксусной кислоты в год.

Разработан и  реализован эффективный непрерывный  способ получения уксусной кислоты  в батарее последовательно работающих ферментеров (обычно 5 аппаратов). Температура культивирования составляет 28°С для Acetobacter и 35°С при использовании в качестве продуцента культуры Bact. schutzenbachii. Наилучшим сырьем для процесса является этиловый спирт, полученный из зерно-картофельного сырья, при его концентрации около 10 %. Оптимум рН для развития бактерий – около 3. При увеличении содержания уксусной кислоты в культуре свыше 8 % рост бактерий замедляется, при 12–14 % прекращается. Поэтому процесс проводят в батарее последовательно соединенных аппаратов. Первый выполняет роль циркулятора, поэтому в него непрерывно подают свежую среду и поддерживают условия, оптимальные для быстрого образования биомассы бактерий. Культура из первого аппарата поступает во второй аппарат и далее – в последующие, при этом транспортировка культуральной жидкости осуществляется воздухом. В каждом аппарате условия ферментации стабилизируются в соответствии с требованиями течения хода ферментации, при постепенном понижении температура среды от 28°С в первом аппарате до 25°С – в последнем. Режим аэрации также изменяется, от 0,4 до 0,15 м3/м3 мин. Концентрация спирта со второго по четвертый аппарат стабилизируется на требуемом уровне подачей в них среды с 40 % этанолом. Из последнего аппарата выводится культуральная жидкость с содержанием ацетата не ниже 9.0 и не выше 9.3 %. Выход кислоты составляет до 90 кг из 100 л безводного спирта. 5

На постферментационной  стадии после отделения бактериальной  биомассы раствор уксуса фильтруют, освобождая от окрашенных и взвешенных частиц, и далее подвергают пастеризации. Для повышения концентрации исходные растворы вымораживают до 20–30 %. Дальнейшее концентрирование до получения ледяной уксусной кислоты (98.0–99.8 %), проводят методом перегонки.

 

  1. Характеристика методов дезинфекции, стерилизации, пастеризации, их использование в пищевой промышленности.

Неблагоприятное воздействие различных факторов внешней среды на микроорганизмы используют для борьбы с ними при  разработке методов и способов стерилизации и дезинфекции.

Стерилизация — обработка объектов, при которой достигается полное уничтожение всех микроорганизмов. В результате стерилизации объект становится свободным как от патогенных, так и от сапрофитных микробов. Существуют различные методы и способы стерилизации, в основе которых лежит действие физических или химических факторов. Критерием гибели микроорганизмов является необратимая утрата способности к размножению, что можно оценить путем количественного подсчета числа колоний после высева смывов на чашки с питательными средами.6

Наиболее широко применяют методы тепловой стерилизации: кипячением, сухим жаром в атмосфере  горячего воздуха или влажным  жаром при помощи пара, а также  прокаливанием предметов в огне.

Прокаливание  на огне — надежный метод стерилизации бактериологических петель, металлических и стеклянных предметов. Однако применяется ограниченно ввиду их порчи.

Стерилизация  сухим жаром или горячим воздухом производится в сушильных шкафах или печах Пастера при температуре 160—170°С в течение 1—1,5 ч по достижении заданной температуры. Этим методом стерилизуют лабораторную посуду, инструменты, минеральные масла, вазелин. Жидкости и резину сухим жаром стерилизовать нельзя. Предметы, подлежащие стерилизации, заворачивают в бумагу или закладывают в металлические пеналы для предохранения от последующего загрязнения. Необходимо помнить, что при температуре выше 170°С начинается обугливание бумаги, ваты, марли, а при более низкой температуре не происходит гибели спор.

Стерилизация  кипячением в течение 30 мин убивает  вегетативные формы микробов. Споры  многих бактерий при этом сохраняются, выдерживая кипячение в течение  нескольких часов. Для уничтожения  вирусов — возбудителей болезни  Боткина необходимо кипячение в  течение 45—60 минут. Кипячению в специальных стерилизаторах подвергают шприцы, хирургические инструменты, иглы, резиновые трубки. Для повышения точки кипения и устранения жесткости воды добавляют 2% гидрокарбоната натрия.

Информация о работе Контрольная работа по "Микробиологии"