Изготовление и проведение обязательных видов внутриаптечного контроля инъекционных растворов

Автор работы: Пользователь скрыл имя, 25 Ноября 2014 в 13:13, курсовая работа

Краткое описание

Идея введения лекарственных веществ через нарушенный кожный покров возникла в 1785 г., когда врач Фуркруа с помощью специальных лезвий (скарификаторов) делал на коже насечки и в полученные ранки втирал лекарственные вещества.
Впервые подкожное впрыскивание лекарств было осуществлено в начале 1851 г. русским врачом Владикавказского военного госпиталя Лазаревым. В 1852 г. Правацем был предложен шприц современной конструкции. Начиная с этого времени, инъекции стали общепризнанной лекарственной формой.

Содержание

Введение
Инъекционные формы, их характеристика
Преимущества и недостатки инъекционного введения
Виды инъекционных манипуляций
Классификация инъекционных растворов
Требования к инъекционным лекарственным формам
Изготовление инъекционных растворов и проведение обязательных видов внутриаптечного контроля
Стадии технологического процесса
Подготовительные работы
Изготовление раствора
Фильтрование и фасовка
Стерилизация раствора
Контроль качества готовой продукции
Оформление к отпуску
Хранение растворов для иъекций
Заключение
Список литературы

Прикрепленные файлы: 1 файл

Изготовление и проведение обязательных видов внутриаптечного контроля инъекционных растворов.docx

— 94.21 Кб (Скачать документ)

 

    1. Подготовка лекарственных и вспомогательных веществ

Лекарственные вещества , используемые при изготовлении инъекционных растворов должны отвечать требованиям ГФ, ФС, ВФС, ГОСТ, квалификации х.ч.(химически чистый) и ч.д.а. (чистый для анализа). Некоторые вещества подвергаются дополнительной очистки и выпускаются повышенной чистоты, квалификации «Годен для инъекций». Примеси в последних могут оказать или токсическое воздействие на организм больного, или снизить стабильность инъекционного раствора.

В глюкозе и желатине (благоприятная среда для развития микроорганизмов) могут содержаться пирогенные вещества Поэтому для них определяется тест-дозана пирогены в соответствии со статьей ГФХ1 «Проверка пирогенности». Глюкоза не должна давать пирогенный эффект при введении 5% раствора из расчета 10 мг/кг массы кролика, желатин при введении 10% раствора.

Бензилпеницеллина каливую соль также проверяют на пирогенность  и испытывают на токсичность.

Для некоторых препаратов проводят дополнительные исследования на чистоту: кальция хлорид проверяют на растворение в этаноле и содержание железа, гексаметилентетрамин – на отсутствие аминов, солей аммония и хлороформа; коффеина-бензоат натрия – на отсутствие органических примесей (раствор не должен мутнеть или выделять осадок в течение 30 мин при нагревании); магния сульфат для инъекций не должен содержать марганец и другие вещества, что отмечено в нормативной документации.

Некоторые вещества влияют на стабильность инъекционных растворов. Например, натрия гидрокарбонат квалификации х.ч. и ч.д.а., отвечает требованиям ГОСТа 4201-66, а также «Годен для инъекций», должен выдерживать дополнительные требования на прозрачность и бесцветность 5% раствора, ионов кальция и магния должно быть не более 0,05%, иначе в процессе термической стерилизации раствора будет выделяться опалесценция карбонатов этих катионов. Эуфилин для инъекций должен содержать повышенное количество этилендиамина (18-22%), используемый как стабилизатор этого вещества в количестве 14-18% в растворах для перорального применения, и выдерживать дополнительные испытания на растворимость. Натрия хлорид (х.ч.), выпускаемый по ГОСТу 4233-77, должен соответствовать требованиях ГФ, калия хлорид (х.ч.) должен отвечать требованиям ГОСТа 4234-65 и ГФ. Натрия ацетат квалификации ч.д.а. должен отвечать требованиям ГОСТа 199-68, натрия бензоат не должен содержать более 0,0075% железа. Раствор тиамина бромида для инъекций должен выдерживать дополнительные испытания на прозрачность и бесцветность.

Лекарственные вещества, используемые для приготовления инъекционных растворов  хранят в отдельном шкафу в стерильных штангласах, закрытыми притертыми пробками и надписью «Для стерильных лекарственных форм». Термостойкие вещества перед наполнением штангласа подвергают термической стерилизации.

Штангласы перед наполнением моют и стерилизуют. На каждом штангласе  должна быть прикреплена бирка с указанием: № серии, предприятия изготовителя, № анализа контрольно-аналитической лаборатории, сроком годности, датой заполнения и подписью, заполнившего штанглас. Заполнение и контроль за сроками годности осуществляется в соответствии с приказом МЗ РФ № 214 от 16 июля 1997г.

 

    1. Изготовление раствора
  1. Загрузка сырья и растворение

Инъекционные растворы готовят в массо-объемной концентрации. Для приготовления растворов отвешивают необходимое количество лекарственного вещества и растворяют в мерном сосуде в части воды для инъекций, после чего доводят до требуемого объема.

При отсутствии мерного сосуда количество, необходимого для приготовления раствора, определяют расчетным способом, используя величину плотности для данной концентрации или коэффицент увеличения объема (КУО), под которым понимают увеличение объема при растворении 1 г вещества.

Таблица КУО приведена в приложении 9 к Инструкции по изготовлению в аптеки жидких лекарственных форм, утвержденных приказом МЗ РФ № 308.

Для препаратов содержащих кристаллизованную воду, перерасчитывают количество вещества на безводный препарат.

Категорически запрещается одновременное изготовление на одном рабочем столе нескольких стерильных растворов, содержащих лекарственные вещества с разными наименованиями или одного наименования, но с разными концентрациями.

  1. Изотонирование растворов для инъекций.

Растворы, у которых осмотическое давление равно осмотическому давлению крови, называют изотоническими. Кровяная плазма, лимфа, слезная и спинная жидкость имеют постоянное осмотическое давление, поддерживаемое специальными осморецепторами. Введение в кровяное русло больших количеств инъекционных растворов с другим осмотическим давлением может привести к сдвигу осмотического давления и вызвать тяжелые последствия. Объясняется это следующими обстоятельствами. Клеточные оболочки, как известно, обладают свойством полупроницаемости, т. е. Пропуская воду, не пропускают многие растворенные в ней вещества. Если снаружи клетки будет находиться жидкость с иным осмотическим давлением, чем внутри клетки, то жидкость движется в клетку (экзоосмос) или из клетки (эндоосмос) до момента выравнивания концентрации. Если ввести в кровь раствор с высоким осмотическим давлением (гипертонический раствор), то в результате и в окружающей их плазме жидкость из эритроцитов направляется в плазму, эритроциты при этом, лишаясь части воды, сморщиваются (плазмолиз).  Напротив, если вводить раствор с малым осмотическим давлением (гипотонический раствор), то жидкость пойдет внутрь клетки, эритроциты будут разбухать, оболочка может лопнуть, а клетка погибнуть (произойдет гемолиз). Чтобы избежать указанных осмотических сдвигов, следует вводить в кровяное русло растворы с осмотическим давлением, равным осмотическому давлению крови, спинномозговой и слезной жидкости, т.е. 7,4 атм и соответствовать осмотическому давлению раствора натрия хлорида 0,9%.

Изотонические концентрации лекарственных веществ в растворах можно рассчитать разными способами:

  1. Расчет по закону Вант-Гоффа
  2. Криоскопический метод.
  3. Иногда используются графический метод расчета изотонической концентрации, позволяющий по разработанным диаграммам (нонограммам) быстро, но с некоторой приближенностью, определить количество вещества необходимое для изотонирования раствора лекарственного вещества.

Недостатком этих методов можно считать то, что либо расчеты изотонической концентрации ведутся по одному компоненту, либо расчеты массы второго вещества слишком громоздки.  И т.к. ассортимент однокомпонентных растворов не так велик, и все чаще используют дву- и более компонентные прописи, гораздо проще проводить расчеты с использованием изотонического эквивалента.  В настоящее время другие методы расчета не используются.

Изотоническим эквивалентом по натрию хлориду называют то количество натрия хлорида, которое создает в одинаковых условиях осмотическое давление равное осмотическому давлению 1 г вещества. Зная эквивалент по натрию хлориду, можно изотонировать любые растворы, а так же определить их изотонические концентрации.

Таблица изотонических эквивалентов по натрию хлориду приведены в ГФXI издания, выпуск 2.

Пример расчета:     Rp.:

Dicaini              3,0

                        Natrii chloridi  q.s. ut f. sol. Isotonici  1000 ml

   D.S.

Для приготовления изотонического раствора только из натрия хлорида, его нужно взять 9 г для приготовления 1 л раствора (изотоническая концентрация натрия хлорида равна 0,9 %). По таблице  ГФXI определяем, что изотонический эквивалент по натрию хлориду у дикаина равен 0,18 г.

 

Это означает, что

1 г дикаина  равноценен 0,18 г натрия хлорида, а

3 г дикаина  – 0,54 г натрия хлорида.

Следовательно, по прописи натрия хлорида необходимо взять: 9,0 – 0,54 = 8,46 г.

 

  1. Стабилизация растворов.

В процессе приготовления инъекционных растворов (особенно при тепловой стерилизации) и последующим хранении возможно частичное разложение растворимых лекарственных средств.  При этом протекают сложные и зачастую не достаточно изученные процессы. Скорость разложения зависит не только от температуры, но и от рН среды и свойств упаковки

Для повышения стойкости к отдельным инъекционным растворам добавляют соответствующие стабилизаторы, консерванты, антиоксиданты, эмульгаторы и другие вспомогательные вещества, указанные в частных статьях.

В качестве вспомогательных веществ используют аскорбиновую, соляную, винную, лимонную, уксусную кислоты , натрия карбонат, натрия бикарбонат, едкий натр, натрия или калия сульфит, бисульфит или метасульфит, натрия теосульфат, натрия цитрат, натрия фосфат одно- и двузамещенный, натрия хлорид, метиловый эфир оксибензойной кислоты, ронгалит, динатривая соль этилендиаминтетрауксусной кислоты, спирт поливиниловый, хлорбутанол, крезол, фенол.

Количество добавляемого вспомогательного вещества, если нет указаний в частных статьях не должно превышать следующие концентрации: для подобных хлорбутанолу, крезолу, фенолу – до 0,5%; сернистого ангидрида или эквивалентного количества сульфита, бисульфита или метасульфита калия или натрия – до 0,2%.

Лекарственные вещества для внутриполостных, внутрисердечных, внутриглазных или других инъекций, имеющих доступ к спинномозговой жидкости, а так же при разовой дозе, превышающей 15 мл, не должно содержать консервантов.

Выбор стабилизатора зависит в основном от свойств медикаментов, входящих в инъекционные растворы.

При рассмотрении вопроса стабилизации лекарственные вещества ориентировочно делят на 3 группы:

  1. Растворы солей слабых оснований и сильных кислот, которые стабилизируются добавление раствора кислот – соляной, винной, лимонной, уксусной кислот.
  2. Растворы солей сильных оснований и слабых кислот, стабилизирующиеся добавлением раствора гидроксида натрия, натрия карбоната.
  3. Растворы легкоокисляющихся лекарственных веществ, стабилизирующихся добавлением антиоксидантов.
    1. Стабилизация растворов солей слабых основание и сильных кислот

К этой группе относят растворы солей алкалоидов и синтетических азотистых оснований, которые занимают значительное место в ассортименте инъекционных растворов.

Растворы этих солей имеют нейтральную или слабокислую реакцию. При растворении происходит гидролиз соли, а незначительное повышение рН приводит к выпадению осадка, что может быть вызвано присутствием щелочей стекла.

Для того чтобы избежать этих изменений по ГФXI большинство таких растворов стабилизируются 0,1 н. раствором кислоты хлороводородной. Роль которой заключается в нейтрализации щелочи, выделяемой стеклом и снижением рН раствора в кислую сторону.

Количество соляной кислоты, необходимой для стабилизации раствора, зависит от свойств лекарственных веществ. Наиболее часто прибавляют 10 мл 0,1 н. раствора HCl на 1 литр стабилизируемого раствора, что соответствует 0,001 н. раствору кислоты хлороводородной (рН 3-4). Это количество HCl  рекомендуется для растворов дикаина, дибазола, кокаина гидрохлорида, стрихнина сульфата и других инъекционных растворов.

Для достижения оптимального для устойчивости лекарственного вещества рН могут добавляться меньшее или большое количество 0,1 н. HCl. Для получения устойчивого раствора новокаина для инъекций 0,5 -1-2% по ГФXI необходимо добавление 0,1 н. раствора HCl до рН 3,8-4,5, что соответствует 3,4 и 9 мл 0,1 н. кислоты хлороводородной на 1 л раствора. Для приготовления стабильного раствора новокаина (1-2%) на изотоническом растворе натрия хлорида, следует добавить 5 мл 0,1 раствора HCl на 1 л.

При добавлении указанных количеств HCl, получаются растворы с минимальным количеством водорода хлорида. Введение такого раствора не оказывает воздействия на организм.

Практическое значение имеет изготовление и хранение раствора 0,1 н. HCl.  В аптеки для удобства дозирования и хранения целесообразно готовить 0,01 н. раствора HCl по прописи: 0,42 мл кислоты хлороводородной разведенной на 100 мл воды. Приготовленный раствор разливают по 10 мл во флаконы нейтрального стекла и стерилизуют насыщенным паром под давлением при температуре 120ºС в течение 8 мин. Раствор используют в кратном количестве. Срок хранения стабилизатора не более 5 суток.

 

    1. Стабилизация растворов солей слабых кислот и сильных оснований

В водных растворах соли слабых кислот и сильных оснований легко гидролизуются, образуя слабощелочную реакцию среды, что приводит к образованию труднорастворимых осадков.

Для стабилизации таких растворов используется 0,1 н. раствор гидроксида натрия, а иногда и натрия карбонат в количестве 2-4г вещества на 1 л раствора.

К веществам стабилизируемым данным способом относятся такие вещества, как натрия теосульфат, кофеина-натрия бензоат, теоффелин и т.д.

 

    1. Стабилизация растворов легкоокисляющихся веществ

К легкоокисляющимся веществам относятся кислота аскорбиновая, адреналина гидротартрат, этиленморфина гидрохлорид, викасол, новокаиномед, производные фенофтивазина и др. лекарственные вещества.

В процессе изготовления инъекционных растворов этих веществ в присутствие кислорода, содержащегося в воде и над раствором, происходит окисление. В результате в растворах образуются продукты окисления, часто более токсичные или физиологически неактивные. Окисление в значительной степени увеличивается под влиянием света, тепла, значения рН, кислорода.

Для стабилизации легкоокисляющихся веществ используют антиоксиданты, с различными механизмами действия. К ним относятся вещества, содержащие серу низкой валентности (ронгалит, унитол, натрия метабисульфит и т.д.), комплексоны, связывающие тяжелые металлы (ЭТДА, трилон Б, тетацин кальция), высокомолекулярные вещества (полигликин, пропиленгликоль и т.д.). В настоящее время разрабатывается возможность использования комплексных стабилизаторов, проверяются на безопасность новые антиоксиданты.

Особого внимания заслуживает стабилизация растворов глюкозы. Ранее растворы глюкозы готовились со стабилизатором Вейбеля, состоящего из 5,2 г натрия хлорида, 4,4 кислоты хлороводородной разведенной 8,3 % и воды до 1 л раствора. Но в настоящее время в соответствии с МУ «Технология, контроль качества и срок годности растворов глюкозы 5%, 10%, 20% для инъекций, изготовленных в аптеки» утвержденных МЗ РФ 19 июня 1997г. в дополнение к приказу №214 растворы глюкозы, выше указанной концентрации готовятся без стабилизатора.

Информация о работе Изготовление и проведение обязательных видов внутриаптечного контроля инъекционных растворов