Автор работы: Пользователь скрыл имя, 27 Апреля 2013 в 18:59, реферат
Дело в том, что на КТ контрастность тканей связана с единственным параметром, характеризующим каждую ткань. - ее рентгеновской плотностью, или, как еще говорят «электронной плотностью» вещества, т.е. способностью слоя вещества поглощать рент. излучение. Можно сказать, что КТ отражает как бы поверхностное строение атомов вещества. Чем ярче выглядит ткань на КТ, тем она плотнее.
Введение 2
Исследование МР томографии и устройство МР томографа 2
Отличие систем МРТ по типами главных магнитов 3
Физические основы явления ЯМР 8
Контрастность изображения: протонная плотность,
Т1- и Т2-взвешенность 9
Противопоказания и потенциальные опасности 10
Содержание:
Введение 2
Исследование МР томографии и устройство МР томографа 2
Отличие систем МРТ по типами главных магнитов 3
Физические основы явления ЯМР 8
Контрастность изображения: протонная плотность,
Т1- и Т2-взвешенность 9
Противопоказания и
Введение
Явление ЯМР было открыто сравнительно недавно в 1946 году, за открытие которого F. Bloch и E. Purcell получили Нобелевскую премию. Однако метод
МРТ вышел за рамки лабораторных исследований совсем недавно - в начале 80-х годов и к настоящему времени развитие компьютерной и измерительной техники и появление новейших технологий создания однородных магнитных полей поставили его в один ряд с методами КТ, а в некоторых случаях и вывели на первое место.
Дело в том, что на КТ контрастность тканей связана с единственным параметром, характеризующим каждую ткань. - ее рентгеновской плотностью, или, как еще говорят «электронной плотностью» вещества, т.е. способностью слоя вещества поглощать рент. излучение. Можно сказать, что КТ отражает как бы поверхностное строение атомов вещества. Чем ярче выглядит ткань на КТ, тем она плотнее.
МРТ строится по переизлучению радиоволн ядрами водорода (протонами), содержащимися в тканях тела, сразу же после получения ими энергии от радиоволнового сигнала, которым облучают пациента. Таким образом, контрастность тканей отражает особенности «внутренних», ядерных структур вещества, и она зависит от ряда таких факторов, как строение вещества, взаимодействие между молекулами, молекулярное движение (диффузия, кровоток), что позволяет не только дифференцировать на изображении патологические и здоровые ткани, ни и дает возможность наблюдать отражение функциональной деятельности отдельных структур. Выбирая форму облучающего радиоволнового сигнала или импульсной последовательности, можно выделить влияние на тканевую контрастность одного какого-нибудь параметра, и одна и та же ткань на одной МРТ может получиться светлой, а на другой - темной.[1]
Исследование МР томографии и устройство МР томографа
Прежде всего пациента помещают внутрь большого магнита, где имеется довольно сильное постоянное (статическое) магнитное поле, ориентированное в большинстве аппаратов вдоль тела пациента. Под воздействием этого поля ядра атомов водорода в теле пациента, которые представляют собой маленькие магнитики, каждый со своим слабым магнитным полем, ориентируются определенным образом относительно сильного поля магнита. Добавляя слабое переменное магнитное поле к статическому магнитному полю, выбирают область, изображение к. надо получить.
Затем пациента облучают
радиоволнами, причем частоту радиоволн
подстраивают таким образом,
Зарегистрированные токи
являются МР сигналами, к.
Соответственно этапам исследования основными компонентами любого МР томографа являются: магнит, создающий постоянное (статическое), так называемое внешнее, магнитное поле, в которое помещают пациента градиентные катушки, создающие слабое переменное магнитное поле в центральной части основного магнита, называемое градиентным, которое позволяет выбрать область исследования тела пациент радиочастотные катушки - передающие, используемые для создания возбуждения в теле пациента, и приемные - для регистрации ответа возбужденных участков компьютер, который управляет работой градиентной и радиочастотной катушек, регистрирует измеренные сигналы, обрабатывает их, записывает в свою память и использует для реконструкции МРТ.
Всякое М поле
Единицей измерения является 1 Тл (тесла).
В МРТ в зависимости
от величины постоянного
со сверхслабым полем 0,01 Тл - 0,1 Тл со слабым полем 0,1 - 0,5 Тл с средним полем 0,5 - 1.0 Тл с сильным полем 1.0 - 2,0 Тл со сверхсильным полем >2,0 Тл[2]
Отличие систем МРТ по типами главных магнитов
В выпускаемых МРТ
используются три типа
Резистивные магниты представляют
собой систему катушек с
Именно такие томографы представляет собой наиболее сложную систему, состоящую из большого числа узлов различного назначения и размещенную на большой площади. Это связано со сложной энергетической установкой для питания главного магнита и с системой водяного охлаждения.
Структурная схема системы МРТ с резистивным магнитом представлена на рисунке 2.1.
В МРТ все субсистемы, участвующие в сборе и обработке информации, работают под управлением ЭВМ. Свои управляющие функции ЭВМ осуществляет через электронный блок управления – крейт 11. Отсюда идут аналоговые и цифровые управляющие сигналы и команды в РЧ передатчик 10 и источники питания градиентных катушек 8. В этих блоках генерируются сигналы большой мощности и выделяются значительные тепловые потери. Поэтому они оформлены в самостоятельные конструктивные узлы. Источники питания градиентной системы, по существу, представляют собой усилители мощности и размещены в шкафах в одном помещении с источником питания главного магнита. Там же находятся и основные узлы контроля системы охлаждения 1.
1 – система охлаждения,
2 – экранирующая камера, 3 – резистивный
магнит, 4 – источник питания
Рисунок 2.1 – Структурная
схема МРТ с резистивным
Магнитная система МРТ, помещается в специальной комнате, пол, стены и потолок которой обтягиваются тонкой металлической сеткой 2. Она служит для защиты от помех. Тем не менее, помехи проникают и вносят искажения в МР-томограммы. И это объяснимо – РЧ сигналы, получаемые от тканей организма, сравнимы по величине с электромагнитными колебаниями, приходящими из эфира и составляют десятки микровольт. Помехи могут проникать также из электросети. Для их подавления все силовые токи – источников питания главного магнита, градиентной системы и передатчика – пропускаются через фильтры 7. Этой же цели служит применение предварительного усилителя РЧ сигнала 9, расположенного в непосредственной близости от РЧ катушки. Предварительно усиленный РЧ сигнал с минимальной примесью помех, поступает в крейт, где дополнительно усиливается.
Системе водяного охлаждения 1 в МРТ такого типа отводится важная роль. Вода используется для отвода тепла не только от катушек главного магнита, но и от нагруженных силовых элементов источников питания главного магнита и градиентных систем. [3].
При индукции основного поля свыше 0,5 Тл применение резистивного магнита технически и экономически становится невозможным. Здесь им на смену приходят сверхпроводящие магниты. Катушки такого магнита помещают в кожух, заполненный жидким гелием, имеющим температуру –269оС.
Кожух с жидким гелием охвачен кожухом, заполняемым жидким азотом с температурой –196о С. Проводники катушек из ниобия-титана, находящиеся в жидком гелии, становятся сверхпроводниками, т.е. их сопротивление становится равным нулю.
Поэтому для запуска магнита достаточно подать в его обмотку импульс тока и затем замкнуть накоротко внешнюю цепь. После этого ток в катушках магнита может циркулировать годами. Однако при эксплуатации криогенного магнита возникают другие проблемы. С течением времени количество криогенного вещества уменьшается и их приходится дозаправлять[3]. Примером может служить МРТ «MAGNETOM Harmony».
Структурная схема системы МРТ со сверхпроводящим магнитом представлена на рисунке 2.2.
1– экранирующая камера, 2 – кожух с жидким азотом, 3 – кожух с жидким гелием, 4 – сверхпроводящий магнит, 5 – источник первичного импульса, 6 – градиентная катушка, 7 – радиочастотная катушка, 8 – блок фильтрации, 9 – источник питания градиентной катушки, 10 – предварительный усилитель, 11 – радиочастотный передатчик, 12 – крейт, 13 – ПЭВМ
Рисунок 2.2 – Структурная схема МРТ со сверхпроводящим магнитом
Диагностические возможности МРТ с резистивным магнитом устроили бы вполне, если бы не его колоссальное энергопотребление и расход воды для охлаждения. Поэтому применяют постоянные магниты, имеющие сравнительно небольшую индукцию (0,2 – 0,35 Тл), но зато не потребляющих никакого тока (не считая ГКМ и РЧ катушек).
Такие магниты обычно собирают
из отдельных магнитных «
так же, как в МРТ с катушечными магнитами. Используют также постоянные электромагниты с вертикальным полем и стальным сердечником с индукцией от 0,1 до 0,6 Тл. При одинаковой индукции ток подмагничивания и расходуемая мощность у электромагнита намного меньше, чем у резистивного магнита[Марусина]. Пример, МРТ «Hitachi AIRIS Mate». Структурная схема системы МРТ с постоянным магнитом представлена на рисунке 2.3.
1– экранирующая камера, 2 – постоянный магнит, 3 – градиентная катушка, 4 – источник питания градиентной катушки, 5 – радиочастотная катушка, 6 – блок фильтрации, 7 – предварительный усилитель, 8 – радиочастотный передатчик, 9 – крейт, 10 – ПЭВМ
Рисунок 2.3 – Структурная схема МРТ с постоянным магнитом
Физические основы явления ЯМР
Явление ЯМР связано с поведением в магнитном поле магнитных моментов атомных ядер. Ядро атом состоит из протонов и нейтронов. Все частицы постоянно вращаются вокруг своей оси и обладают поэтому собственным моментом количества движения - спином s. При этом собственный положительный заряд протона вращается вместе с ним и создает по закону электромагнитной индукции собственное магнитное поле. Таким образом собственное магнитное поле протона похоже на поле постоянного магнита и представляет собой магнитный диполь с северным и южным полюсами. Когда пациента помещают внутрь сильного магнитного поля МР-томографа, все маленькие протонные магниты тела разворачиваются в направлении внешнего поля. Помимо этого, магнитные оси каждого протона начинают вращаться вокруг направления внешнего магнитного поля. Это специфическое вращение называется прецессией, а его частоту - резонансной частотой или частотой Лармора. Частота Л. пропорциональна силе внешнего магнитного поля и составляет для ядер атома водорода 42,58 МГц/Тс.[4]
Большинство магнитных моментов протонов прецессируют в сторону «севера», т.е. в направлении, параллельном внешнему магнитному полю. Их называют «параллельными протонами». Оставшаяся меньшая часть М моментов протонов прецессирует свои М моменты в сторону «юга», т.е. практически антипараллельно внешнему маг. полю, это «антипараллельные протоны». В результате в тканях пациента создается суммарный магнитный момент: ткани намагничиваются, и их магнетизм (М) ориентируется точно параллельно внешнему магнитному полю В0. Величина М определяется избытком параллельных протонов, который пропорционален силе внешнего М поля, но он всегда крайне мал. М также пропорционален числу протонов в единице объема ткани, т.е. плотности протонов. Огромное число (примерно 1022 в мл воды) содержащихся в большинстве тканей протонов обусловливает тот факт, что чистый магнитный момент достаточно велик, для того чтобы индуцировать электрический ток в расположенной вне пациента принимающей катушке. Эти индуцированные «МР- сигналы» используются для реконструкции МР-изображения. МР-сигнал.[5]
Любое магнитное поле может индуцировать в катушке электрический ток, но предпосылкой для этого является изменение силы поля. При пропускании через тело пациента вдоль оси y коротких ЭМ радиочастотных импульсов М поле радиоволн заставляет М моменты всех протонов вращаться по часовой стрелке вокруг этой оси. Для того чтобы это произошло, необходимо, чтобы частота радиоволн была равна ларморовской частоте протонов. Это явление и называют ядерным магнитным резонансом. Под резонансом понимают синхронные колебания, и в данном контексте это означает, что для изменения ориентации магнитных моментов протонов М поля протонов и радиоволн должны резонировать, т.е. иметь одинаковую частоту.
Информация о работе Исследование МР томографии и устройство МР томографа