Хроноструктура биоритмов сердца и факторы внешней среды

Автор работы: Пользователь скрыл имя, 07 Июня 2013 в 00:34, реферат

Краткое описание

Работа посвящена экспериментальному изучению в наземной лаборатории и в условиях космического полета хроноструктуры ритмов различных показателей сердечно-сосудистой системы, а также их изменений под воздействием факторов внешней среды. Приводятся данные, показывающие, что циркадианная система сердца гибко и последовательно изменяется в циклах, имеющих многолетние, инфрадианные и многодневные периоды, например, таких, как одиннадцатилетний цикл солнечной активности, около 28 –дневный, около – 14-дневный, около-недельный ритмы. Выявлены достоверные отличия хроноструктуры суточного ритма, определяемые сменой сезонов года.

Прикрепленные файлы: 1 файл

monografia.doc

— 1.51 Мб (Скачать документ)

Рассчитывали  коэффициенты корреляции индекса геомагнитной активности (Ар), а также среднесуточных значений атмосферного давления Р с суммарной характеристикой капиллярного кровотока, которая представляла сумму измененных значений перечисленных выше показателей. Оказалось, что у 74% мужчин и 69% женщин с инфарктом миокарда величина  r  составляла 0,73 и 0,63 соответственно. У больных стенокардией значения  r  достигали 0,635  у 73% мужчин и 0,661  у 56% женщин (Гурфинкель Ю.И. и др. 1994). Следует отметить, что величина  r  для корреляции суммарного показателя капиллярного кровотока с атмосферным давлением была всегда меньше таковой для корреляции Ар-индекса с суммарным кровотоком. В ряде случаев ухудшение капиллярного кровотока наблюдалось на 2-й и 3-й дни после начала магнитной бури, и величина  r, рассчитанная с соответствующим сдвигом, возрастала до 0,86 у мужчин  и 0,71 у женщин. В контрольной группе, состоящей из 12 здоровых добровольцев моложе 30 лет, только в 33% случаев отмечена реакция капиллярного кровотока на магнитные бури. В контрольной группе изменения исчезали значительно быстрее, чем у больных. В настоящее время эти исследования продолжаются в Лаборатории по магнитобиологии, созданной в клинике и руководимой Ю.И.Гурфинкелем, накоплен обширный экспериментальный материал и получены статистически достоверные результаты, подтверждающие описанные выше.

Эти результаты, имеющие большую степень  достоверности, согласуются с полученными в последнее время другими клиническими данными о влиянии геомагнитных возмущений на течение и обострение сердечно-сосудистых заболеваний.

Так, например, Лабзин Ю.А. с соавт. (1996) анализировали  функциональное состояние свертывающей (протромбиновый индекс по Квику) и противосвертывающей (гепарин по Калуженко-Мурчакову, фибринолитическая активность по Котовщиковой-Кузнику) систем крови у 91 больного ишемическим инсультом, развившимся на почве церебрального атеросклероза или гипертонической болезни, в зависимости от проявлений солнечной активности. Выяснилось, что достоверное увеличение чисел Вольфа, площади солнечных пятен, хронологически совпадало с увеличением протромбинового индекса (у 45% больных), с уменьшением содержания гепарина (у 57% обследуемых), понижением фибринолитической активности (у 60% больных). Указанные изменения свидетельствуют, что повышение солнечной активности может приводить к активации функции свертывающей и угнетению функции противосвертывающей систем крови, т.е. к повышению коагуляционных свойств крови.

Таким образом, из приведенных выше результатов  различного рода исследований с очевидностью следует, что человеческий организм  обладает способностью реагировать как на ритмические вариации, так и на возмущения  геомагнитные поля.

Следует напомнить также давно и хорошо известные результаты исследований насекомых и рыб. В частности, Александров В.В. (1993), изучавший восприятие рыбами воздействия геомагнитной активности, пришел к выводу, что геомагнитное поле изменяет  естественные биоритмы двигательной активности рыб.  Исследования Чернышева В.Б. с соавт. (1993), изучавших поведение насекомых во время магнитной бури, выявили, что суточные миграции насекомых резко искажены и частично инвертированы во время бури практически у всех массовых видов.

Одной из концепций механизмов воздействия геомагнитных полей на биологические организмы является идея гипотетических магниторецепторов. Убедительным аргументом в пользу этой концепции считалось обнаружение магнетитов у некоторых биологических объектов, располагающихся в различных частях тела: у голубя - в передней части черепа, у пчелы - в брюшной полости, у моллюсков - в области челюстей. Найдены ферромагнетики и в головном мозге дельфинов (Zolger F. et al., 1979). В ряде исследований были обнаружены и магниторецепторы у людей в области прилежания головного мозга к клиновидной кости, а также в области надпочечников (Kirschving I. et al., 1989). У насекомых, рыб и птиц обнаруженные магниторецепторы, по-видимому, играют важную роль в использовании ими постоянного магнитного поля Земли в интересах навигации при сезонных миграциях (“хоминговые эффекты”).   У человека же эти магниторецепторы, скорее всего, являются рудиментарными и не играют ведущей роли в настоящее время в механизмах передачи организму информации о воздействии переменных электромагнитных полей. Они,  кроме того, малодоступны, во всяком  случае, у человека,  для прямого воздействия слабых –электромагнитных сигналов окружающей среды. Однако существование подобных магнетитов в живых организмах  свидетельствует о том, что живые организмы были чувствительны исходно к воздействиям магнитных полей, игравших определенную роль в их самоорганизации.

Таким образом,  до сих пор нет  убедительных концепций “детекторов” переменных электромагнитных полей у человека. Одной  из эффективных гипотез по-прежнему остается все-таки рецепторная.  Местонахождение таких рецепторов переменных магнитных полей исследовано пока еще недостаточно. В то же время,  хорошо известны магниторецепторы, в том числе кожные, через которые осуществляется воздействие  искусственных электромагнитных полей в лечебных целях.

Есть предположения, что в современных  высоко организованных биологических организмах  система гипоталамус-надпочечники информируется о воздействии геомагнитного поля посредством клеток APUD-системы (располагающихся как на коже, так и в гастроинтестинальном тракте), включающей также эпифиз (Темурьянц Н.А. и др. 1996; Рапопорт и др. 1998). Воздействие вариаций геомагнитного поля через посредство рецепторов на гипоталамо-гипофизарную систему и надпочечники приводит к выделению кортизола и адреналина, который ответственен за активацию свертывающей системы, повышение агрегации эритроцитов, развитие спазма в приносящих сосудах микроциркуляторной сети. У больных ишемической болезнью сердца на первый план выходит вопрос обратимости этих процессов. В процесс  вовлекается эпифиз (Semm P. et al., 1980; Chakraborty S., 1994; Рапопорт и др.1998), который ответственен за регуляцию циркадианного ритма посредством гормона мелатонина. Секреция мелатонина зависит от освещенности. Предполагается, что симпатико-адреналовая реакция на геомагнитное возмущение вовлекает эпифиз и приводит, таким образом, к десинхронизации суточного ритма.

Несмотря на сказанное выше о  продуктивности новых представлений  в проблеме биотропности гелио-геофизических воздействий, десинхроноз биологических ритмов, вызванный воздействием этих внешних факторов, все еще мало изучен в экспериментальном отношении. В связи с этим значительный интерес представляют биоритмологические исследования Фролова В.А., Чибисова С.М. (1980-2000 гг.), некоторые из которых будут рассмотрены подробнее в отдельных главах этой книги. Отметим здесь кратко лишь итоги этих исследований. Проведя несколько серий биоритмологических экспериментов на животных, эти  авторы и их коллеги показали, что для сократительной активности сердца в магнитоспокойные сутки характерна циркадианная ритмичность. В большинстве случаев суточные колебания сократительной функции миокарда имеют форму кривой с двумя пиками: наибольшие значения приходятся на утренние часы, наименьшие - на вечерние. Амплитуда колебаний практически не отличалась в различные сутки эксперимента. В дни магнитной бури наблюдалась совершенно иная динамика изменений структуры циркадианного ритма сердца. По мере развития магнитной бури происходило значительное уменьшение амплитуды суточных колебаний сократительной функции миокарда. Магнитная буря как бы “стирала” циркадианную ритмику показателей сократительной активности сердца, и существенно изменяла характер связей, существующих между показателями сократительной активности левого и правого желудочков сердца.  В период главной фазы магнитной бури и, особенно, на следующий день возникало состояние острого десинхроноза в работе отделов сердца, что могло бы привести к развитию сердечно-сосудистой патологии.  С этим обстоятельством может быть связано учащение случаев внезапной смерти у сердечных больных (Чибисов С.М., Фролов В.А. и др., 1982).

Проявления влияния гелио-геомагнитной активности на популяционном  уровне (согласование ритмов эпидемий, сердечно-сосудистых катастроф с солнечной и геомагнитной активностью) привели к концепции  проявления  этих воздействий и в социальной жизни человеческого общества. В связи с этим Владимирский Б.М. (1998) отмечает, что в истории,  как и в других естественных эволюционных процессах, наблюдаются космофизические периоды,  т.е.  в социальных системах не может не проявляться биологическая ритмика, которая должна быть  синхронизирована с космофизическими циклами. Таковы, например, циклы рождения высокоодаренных личностей и квази-периоды  в течении психических заболеваний. В социальных системах могут возникать самоподдерживающиеся автоколебания, выходящие на режим синхронизации с внешними ритмами.

 

1.4.8. Заключительные замечания 

Заканчивая эту Главу, следует  отметить, что под понятием стресс в самом широком смысле слова  следует понимать процесс текущей  адаптации со свойственным ему напряжением  организма.  Поскольку понятие адаптации, таким образом, отождествляется с понятием жизни, ясно, что с этой точки зрения индивидуальная адаптация есть процесс непрерывный, не прекращающийся ни на одно мгновение,  и  стресс нужно считать постоянным спутником жизни. Напомним, что как отмечал Селье Г. :“...полная свобода от стресса означает смерть”.

Приведенный в этой Главе краткий  обзор сложившейся ситуации свидетельствует о чрезвычайной сложности проблемы взаимодействия эндогенных биологических ритмов сердечно-сосудистой системы и “внешних” стрессов – сбоев ритмов их времядатчиков. В действительности же сложившиеся в последнее время новые представления позволили не только понять причины некоторой противоречивости прежних результатов, но и увидеть направление дальнейших исследований. При этом, как можно было заметить из предыдущих разделов данной книги, и как будет показано ниже, были обнаружены чрезвычайно интересные и важные закономерности, перемещающие актуальность проводимых исследований с прикладных медицинских аспектов к фундаментальным биологическим.

 

ГЛАВА  2

МАТЕРИАЛ И МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНЫХ  ИССЛЕДОВАНИЙ ДЕСИНХРОНОЗА, ВЫЗВАННОГО  ВНЕШНИМИ ВОЗДЕЙСТВИЯМИ

 

2.1. Экспериментальные материалы  и методы исследования животных

Экспериментальные материалы исследования животных, обсуждаемые  в книге, получены на 540 кроликах-самцах породы “шиншилла” массой 2600-3500 г. и охватывают данные исследований, проводившихся сотрудниками кафедры патологической физиологии Российского Университета дружбы народов, в период с 1969 года по настоящее время. Ретроспективному анализу подвергнуты данные, полученные в контрольных экспериментах на 1700 кроликах.

 

2.1.1. Методика  ритмологических исследований

 

Исследования проводились во все  сезоны года и были ориентированы  по срокам астрономического календаря на дни весеннего и осеннего равноденствий, летнего и зимнего солнцестояний (21-24 марта, 21-23 сентября, 21-23 июня, 21-23 декабря). Эксперимент начинался за 30 минут до контрольного времени и заканчивался через 30 минут после него. С 0 часов и в течение 72 часов (3 суток) с интервалом в 3 часа производились замеры и забор материала для исследований всех изучаемых показателей. В каждой группе однократного проведения исследований было 5 животных.

В исследованиях воздействия гелио- геомагнитных возмущений на подопытных кроликов использовались трехчасовые К  и  Кр индексы геомагнитной активности. К-индекс  представляет собой выраженную в десятибалльной системе (0 до 9 баллов) максимальную амплитуду вариаций горизонтальной компоненты геомагнитного поля Земли, регистрируемой непрерывно на магнитных обсерваториях. На каждой широте такая амплитуда имеет свой максимальный размах при одном и том же геомагнитном возмущении, и поэтому для оценки используется бальная система. Для получения планетарного Кр-индекса данные всемирной сети магнитных обсерваторий усредняются. В наших экспериментах использовался К-индекс, оцененный по данным Московской магнитной обсерватории, поскольку исследования проводились в Москве. Эти данные затем сопоставлялись с другими индексами локальной и планетарной геомагнитной активности, такими как Dst –вариация,  Ар  и Ср - индексы.

 

     2.1.2.Методика  моделирования  десинхроноза

Опыты проводились на 60 кроликах самцах породы “шиншилла” массой тела 2600-3500 г. Десинхроноз вызывался принудительным введением животным 20% раствора алкоголя (1 мл на 100 г массы) в течение 11 дней. Алкоголь вводили в начале фазы локомоторной активности (6-8 ч) и в период начала фазы покоя (18-20 ч). Контрольной группе вводили водный раствор перца. Все животные содержались в одинаковых условиях вивария.

 

2.1.3.Методика  электрофизиологических  исследований

 

2.1.3.1. Регистрация   артериального  давления

 

Артериальное давление регистрировалось электроманометрически в центральном конце левой сонной артерии и записывалось на ленте полиграфа  “Mingograf-82” (Швеция).  Для исключения влияния наркоза на сосудистый тонус определение систолического (APMAX) и диастолического (APMIN) артериальных давлений проводилось под новокаиновой анестезией.

2.1.3.2. Изучение  сократительной  функции  сердца  

Для оценки сократительной функции  сердца кролик фиксировался на специальном станке спиной вниз. Затем под гексеналовым наркозом (медленное введение раствора гексенала внутривенно в количестве 1,6 мл/кг на управляемом дыхании) в третьем межреберье вскрывалась грудная клетка. Перед рассечением плевры и перикарда в их полости вводился 1% раствор новокаина. Левый и правый желудочки сердца конюлировались и на ленте полиграфа “Mingograf-82” регистрировалось пиковое систолическое давление в полостях левого (VPREALLV) - внутрижелудочковое давление реальное) и правого (VPREALRV) желудочков сердца. Затем вызывалась пятисекундная окклюзия аорты (для левого желудочка) и легочной артерии (для правого желудочка) и фиксировалось пиковое систолическое (максимальное) внутрижелудочковое давление в условиях практически изометрического сокращения камер сердца (VPMAXLV и  VPMAXRV).

2.1.4.   Методика  определения   в  крови  свободных  жирных  кислот

Согласно литературным данным  (Сosta D., Wenzel D., 1974), свободные жирные кислоты являются лабилизаторами лизосомных мембран. Поэтому в целях исследования возможных пусковых механизмов этого процесса было предпринято изучение содержания свободных жирных кислот (СЖК) в крови.

Уровень свободных жирных кислот определяли в плазме крови спектрофотометрическим методом (Noma A., Okabe H., Kita H., 1973) в модификации Сяткина С.П. и Фролова В.А. (1986), разработанной на кафедре патологической физиологии Российского Университета дружбы народов.

Кровь брали у наркотизированных гексеналом животных пункцией из левого желудочка сердца. Кровь центрифугировали при 2500 об/мин в течение 5 минут с добавлением 3,8% раствора натрия цитрата в отношении 9:1.  0,05 мл полученной плазмы брали для анализа.

Информация о работе Хроноструктура биоритмов сердца и факторы внешней среды