Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 15:35, творческая работа
Краткое описание
Методы теории игр в последнее время все чаще применяется для моделирования и принятия решений в различных сферах. Немаловажную роль данная теория играет в процессе обеспечения безопасности.
Содержание
Введение. Постановка задачи 3 Теоретическая часть 4 Понятие динамической игры 4 Дерево игры. 4 Информационные множества и стратегии в динамической игре. Равновесие Нэша. 5 Игры с совершенной информацией. Равновесие, совершенное по подыграм 6 Игры с несовершенной информацией 7 Равновесие в играх с несовершенной информацией. 8 Сигнальные игры. Байесово равновесие. 11 Практическая часть 14 Пример 1 14 Пример 2 16 Заключение 19 Список литературы 20 Собственные мысли 21
Мы видим, что возможны два типа
равновесий. Первые два равновесия являются
смешивающими, в которых игроки 1 разных
типов выбирают одно и то же действие.
То есть, в нашей истории, это означает,
что и террорист, и мирный будут брать
с собой один и тот же вид сумки. В каком
случае это возможно? Во-первых, необходимо,
чтобы число мирных пассажиров было достаточно
большим . В таком случае
охрана, видя, что вошедший несет «то же,
что и все», вряд ли его проверит, так как
вероятность проверить обычного пассажира
будет слишком велика. Во-вторых, необходимо,
чтобы издержки были ниже, чем издержки
от проверки. Если оба типа игроков выбирают
одинаковые сумки, то обязательно получится
так, что для одного из них этот выбор приведет
к издержкам. Если эти издержки слишком
высоки, то он сможет увеличить свой выигрыш,
выбрав сумку без издержек — даже если
возрастет вероятность проверки.
Второй тип равновесий — разделяющие,
в которых игроки 1 разных типов выбирают
разные сумки. В нашем случае, такое равновесие
одно, в котором мирный будет выбирать
кладь, а террорист — рюкзак. Такое равновесие
будет возможно, если издержки от выбора
«не той» сумки более высоки, чем издержки
от проверки.
Заключение
В данной теоретико-практической
работе проанализирована возможность
применения аппарата теории игр в процессе
обеспечения безопасности. Для этого был,
в основном, рассмотрен подкласс динамических
игр с несовершенной информацией, а также
приведены методы решения подобных игр.
В тексте работы присутствуют некоторые
ссылки на определения, в том числе, относящиеся
к другим классам игр, но которые позволяют
составить целостную картину, и более
полно рассмотреть целевой класс. Таким
образом, в работе частично рассмотрены
динамические игры с совершенной информацией,
даны определения равновесий, с помощью
которых мы пришли к совершенному равновесию
байеса, которое применяется при решении
динамических игр с совершенной информацией.
В практической части были приведены
два примера, которые иллюстрируют рассматриваемые
понятия и позволяют более наглядно изучить
методы и аппарат теории игр, который применяется
в процессе обеспечения безопасности.
Список литературы
Лабскер Л.Г., Бабешко Л.О. «Игровые методы в управлении экономикой и бизнесом». Учебное пособие. – М.: Дело, 2001. – 464 с.
Дж.фон Нейман, О. Моргенштерн «Теория игр и экономическое поведение», М., — изд. «Наука», 1970, 707 с.
В.Бусыгин, С.Коковин, Е.Желободько, А.Цыплаков. 1999. «Микроэкономический анализ несовершенных рынков».- TEMPUS (TACIS), NSU, Новосибирск.
Собственные мысли
Рассматриваемая тема обеспечения
безопасности в последнее время набирает
всё большую актуальность из-за обострения
политической ситуации на Ближнем Востоке
(если мы говорим о терроризме) и из-за
возрастающей важности конфиденциальной
информации (если мы говорим о, например,
хакерских атаках). Применение теории
игр в данном случае позволяет построить
динамическую защиту, которая позволяет
лучше справляться с различными угрозами.
Например, в одном из крупнейших аэропортов
США – аэропорте Лос-Анджелеса – действует
система, основанная на применении теории
игр, которая обеспечивает оптимальное
распределение ресурсов на КПП и патрулей
с собаками.
К сожалению, на сегодняшний
день не так много систем безопасности
используют алгоритмы теории игр, однако
я считаю, что в будущем теория игр и системы,
основанные на её принципах, будут играть
важнейшую роль в обеспечении безопасности,
так как они позволяют оптимально распределить
ограниченные ресурсы для обеспечения
максимального уровня защиты.