Автор работы: Пользователь скрыл имя, 16 Мая 2013 в 14:37, курсовая работа
Штурм Жак Шарль Франсуа (Sturm J. Ch. F. – правильное произношение: Стюрм), родился 29 сентября 1803 года в Женеве. Был членом Парижской академии наук с 1836, а также иностранным членом – корреспондентом Петербургской академии наук с того же года. С 1840 года был профессором Политехнической школы в Париже.
Теорему Фурье ( Теорема о числе действительных корней между двумя данными пределами ), математика Жозефа Фурье (Joseph Fourier, 1768-1830), затмила более общая теорема, опубликованная Штурмом в Bull. mathem., 1829. Доказательство сам Штурм представил только в одной премированной работе 1835г. Коши Огюстен (Cauchy Augustin, 1789-1857) распространил теорему Штурма на комплексные корни (1831). [4,c.54]
ВВЕДЕНИЕ
1. ЭЛЕМЕНТЫ ВЫСШЕЙ АЛГЕБРЫ. НАХОЖДЕНИЕ КОРНЕЙ МНОГОЧЛЕНОВ ВЫСШЕЙ СТЕПЕНИ
2. ЛИНЕЙНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
3. РЯД ШТУРМА (СИСТЕМА ШТУРМА)
4. ТЕОРЕМЫ СРАВНЕНИЯ ШТУРМА
5. ПРИМЕНЕНИЕ ТЕОРЕМ ШТУРМА К РЕШЕНИЮ ШКОЛЬНЫХ ЗАДАЧ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Частному случаю уравнения (1.2) при соответствует уравнение
и" + q(t) u = h(t). (1.6)
Если функция принимает вещественные значения, уравнение (1.2) может быть приведено к такому виду с помощью замены независимых переменных
, т.е. (1.7)
при некотором a € J. Функция s = s (t) имеет производную и потому строго монотонна. Следовательно, функция s = s (t) имеет обратную t= t (s), определенную на некотором s-интервале. После введения новой независимой переменной s уравнение (1.2) переходит в уравнение
(1.8)
где аргумент t выражений p(f)q(t) и p(t) h(f)должен быть заменен функцией t = t(s). Уравнение (1.8) является уравнением типа (1.6).
Если функция g (t) имеет непрерывную производную, то уравнение (1.1) может быть приведено к виду (1.6) с помощью замены неизвестной функции и на z:
(1.9)
при некотором a € J. В самом деле, подстановка (1.9) в (1.1) приводит к уравнению
(1.10)
которое имеет вид (1.6).
В силу сказанного выше, мы можем считать, что рассматриваемые уравнения второго порядка в общем случае имеют вид (1.2) или (1.6). Утверждения, содержащиеся в следующих упражнениях, будут часто использоваться в дальнейшем.
Способ нахождения корней линейных и квадратичных многочленов, то есть способ решения линейных и квадратных уравнений, был известен ещё в древнем мире. Поиски формулы для точного решения общего уравнения третьей степени продолжались долгое время (следует упомянуть метод, предложенный Омаром Хайямом), пока не увенчались успехом в первой половине XVI века в трудах Сципиона дель Ферро, Никколо Тарталья и Джероламо Кардано. Формулы для корней квадратных и кубических уравнений позволили сравнительно легко получить формулы для корней уравнения четвертой степени.[11,c.65]
То, что корни общего уравнения пятой степени и выше не выражаются при помощи рациональных функций и радикалов от коэффициентов было доказано норвежским математиком Нильсом Абелем в 1826 г. Это совсем не означает, что корни такого уравнения не могут быть найдены. Во-первых, в частных случаях, при некоторых комбинациях коэффициентов корни уравнения при некоторой изобретательности могут быть определены. Во-вторых, существуют формулы для корней уравнений 5-й степени и выше, использующие, однако, специальные функции — эллиптические или гипергеометрические (корень Бринга).[11,c.71]
В случае, если все коэффициенты многочлена рациональны, то нахождение его корней приводится к нахождению корней многочлена с целыми коэффициентами. Для рациональных корней таких многочленов существуют алгоритмы нахождения перебором кандидатов с использованием схемы Горнера, причем при нахождении целых корней перебор может быть существенно уменьшен приемом чистки корней. Также в этом случае можно использовать полиномиальный LLL-алгоритм.
Для приблизительного нахождения (с любой требуемой точностью) вещественных корней многочлена с вещественными коэффициентами используются итерационные методы, например, метод секущих, метод бисекции, метод Ньютона. Количество вещественных корней многочлена на интервале может быть оценено при помощи теоремы Штурма.[5,c.29]
3.РЯД ШТУРМА (СИСТЕМА ШТУРМА)
Для вещественного многочлена — последовательность многочленов, позволяющая эффективно определять количество корней многочлена на промежутке и приближённо вычислять их с помощью теоремы Штурма. Ряд и теорема названы именем французского математика Жака Штурма.[5,c.20]
Рассмотрим многочлен f(x) с вещественными коэффициентами. Конечная упорядоченная последовательность отличных от нуля многочленов с вещественными коэффициентами называется рядом Штурма для многочлена f(x), если выполнены следующие условия: не имеет корней;
если и , то ;
если ,
то произведение меняет знак с минуса на плюс, когда x, возрастая, проходит через точку c, т.е. когда существует такое δ > 0, что
для и для .
Значением ряда Штурма в точке c называется количество смен знака в последовательности f0(c),f1(c),...,fs(c) после исключения нулей.
Теорема Штурма: Пусть f(x) — ненулевой многочлен с вещественными коэффициентами, f0(x),f1(x),...,fs(x) — некоторый ряд Штурма для него, [a,b] — промежуток вещественной прямой, причём . Тогда число корней многочлена f(x) на промежутке [a,b] равно W(a) − W(b), где W(c) — значение ряда Штурма в точке c.[5,c.76]
Ряд Штурма существует для любого ненулевого вещественного многочлена. Пусть многочлен f(x), отличающийся от константы, не имеет кратных корней. Тогда ряд Штурма для него можно построить, например, следующим образом:
;
;
Если fk(x) (k > 0) имеет корни, то , где — остаток от деления многочлена f(x) на многочлен g(x) в кольце многочленов , иначе s = k.
Для произвольного многочлена, отличающегося от константы, можно положить , и далее следовать приведенному выше способу. Здесь (f(x),f'(x)) — наибольший общий делитель многочленов f(x) и f'(x). Если многочлен f(x) есть ненулевая константа, то его ряд Штурма состоит из единственного многочлена f0(x) = f(x).
Ряд Штурма используется для определения
количества вещественных корней многочлена
на промежутке. Отсюда вытекает возможность
его использования для
Построим указанным выше способом ряд Штурма для многочлена
f(x) = (x − 1)(x − 3) = x2 − 4x + 3
Построим указанным выше способом ряд Штурма для многочлена
f(x) = (x − 1)(x − 3) = x2 − 4x + 3
Многочлен fi(x) |
Знак многочлена в точке |
||||||
|
0 |
1 |
2 |
3 |
4 |
| |
f0(x) = x2 − 4x + 3 |
|
|
|
|
|
|
|
f1(x) = 2x − 4 |
|
|
|
|
|
|
|
f2(x) = 1 |
|
|
|
|
|
|
|
Значение ряда в точке |
|
|
|
|
|
|
|
Таким образом, по теореме Штурма число корней многочлена f(x) равно: 2 − 0 = 2 на промежутке
2 − 0 = 2 на промежутке (0,4)
2 − 1 = 0 на промежутке (0,2)
4.ТЕОРЕМЫ СРАВНЕНИЯ ШТУРМА
Рассмотрим два уравнения:
где функции вещественны и непрерывны на интервале J. и
. (3.2)
В этом случае уравнение (3.1) называется мажорантой Штурма для (3.1) на J, а уравнение (3.1)-минорантой Штурма для (3.1). Если дополнительно известно, что соотношения
(3.32)
или
и (3.31)
выполняются в некоторой точке , то уравнение (3.32) называется строгой мажорантой Штурма для (3.31) на J.[6,c.37]
Теорема 3.1 (первая теорема сравнения Штурма). Пусть коэффициенты уравнения непрерывны на интервале J: , и пусть уравнение (3.32) является мажорантой Штурма для (3.11). Предположим, что функция является решением уравнения (3.11) и имеет точно нулей при ,а функция удовлетворяет уравнению (3.12) и
(3.4)
при . [Выражение в правой (соответственно левой) части неравенства (3.4) при полагается равным , если (соответственно если ); в частности, соотношение (3.4) справедливо при , если ] Тогда имеет при пo крайней мере n нулей. Более того, имеет по крайней мере n нулей при , если при в (3.4) имеет место строгое неравенство или если уравнение (3.1 г) является строгой мажорантой Штурма для (3.11) при .
Доказательство. В силу (3.4) можно определить при пару непрерывных функций с помощью соотношений
(3.5)
Тогда справедливы аналоги соотношения (2.43):
(3.6j)
Поскольку непрерывные функции , гладким образом зависят от , решения системы (3.6) однозначно определяются своими начальными условиями. Из (3.2) следует, что при и всех . Поэтому последняя часть (3.5) и следствие III.4.2 означают, что
для В частности, из следует, что , и первая часть теоремы вытекает из леммы 3.1.
Чтобы доказать последнюю часть теоремы, предположим вначале, что при в (3.4) имеет место строгое неравенство. Тогда . Обозначим через решение уравнения (3.62), удовлетворяющее начальному условию , так что . Поскольку решение уравнения (3.62) однозначно определяется начальными условиями, при . Неравенство, аналогичное (3.7), означает, что потому . Следовательно, имеет n нулей при .
Рассмотрим теперь тот случай, когда в (3.4) имеет место равенство, но в некоторой точке из выполняется либо (3.31), либо (3.32). Запишем (3.62) в виде
,
где
Если доказываемое утверждение неверно, то из уже рассмотренного случая следует, что при .Поэтому и при Так как только в нулях функции , то отсюда следует, что при и .
Следовательно, если при некотором t, то , т. е. . Если (3.31) не выполняется ни при каком t из отрезка , то при некотором t имеет место (3.32), и потому (3.32) справедливо на некотором подинтервале из . Но тогда на этом интервале и потому . Однако это противоречит условию . Доказательство закончено.
Следствие 3.1 (теорема Штурма о разделении нулей). Пусть уравнение (3.12) является мажорантой Штурма для (3.11) на интервале J, и пусть - вещественные решения уравнений, (3.3j). Пусть обращается в нуль в двух точках интервала J. Тогда имеет по крайней мере один нуль на . В частности, если и вещественные линейно независимые решения уравнения (3.11) (3.12). То нули функции разделяют нули функции и разделяются ими.[7,c.91]
Заметим, что, последнее утверждение этой теоремы имеет смысл, поскольку нули функций и не имеют на J предельных точек. Кроме того, , не могут иметь общего нуля , так как в противном случае в силу того, что решения уравнения (3.11) единственны, , где (так что и не являются линейно независимыми).
Теорема 3.2 (вторая теорема сравнения Штурма). Пусть выполнены условия первой части теоремы 3.1 и функция имеет точно n нулей при . Тогда соотношение (3.4) выполняется при [где выражение в правой (соответственно левой) части (3.4) при полагается равным , если (соответственно, )]. Кроме того, при в (3.4) имеет место строгое неравенство, если выполнены условия последней части теоремы 3.1.[9,c.44]
Доказательство этого утверждения содержится по существу в доказательстве теоремы 3.1, если заметить, что из предположения о числе нулей функции вытекает последнее неравенство в следующей цепочке: . Аналогично, в предположениях последней части теоремы доказательство теоремы 3.1 дает неравенство .
5.ПРИМЕНЕНИЕ ТЕОРЕМ ШТУРМА К РЕШЕНИЮ ШКОЛЬНЫХ ЗАДАЧ
Упражнение 1. (Другое доказательство теоремы Штурма о разделении нулей, когда p1(t)ºp2(t)>0, q2(t)³q1(t).)
Предположим, что u1(t)>0 при t1<t2<t3 и утверждение неверно: например, u2(t)>0 при t1£ t£t2. Умножая (p1(t)u¢)¢+q1(t)u=0, где u=u1, на u2, а (p2(t)u¢)¢+q2(t)u=0, где u=u2, на u1, вычитая и интегрируя по [t1,t2], получаем:
p(t)(u1¢u2-u1u2¢)³0, при t1£t£t2, где p=p1=p2. Это означает, что (u1/u2)¢³0; поэтому u1/u2>0 при t1<t£t2, т.е. получается, что u1(t2)>0 чего быть не может.
Решение:
(p1(t)u¢)¢+q1(t)u=0, u=u1
(p1(t)u1¢)¢+q1(t)u1=0.
Умножим левую часть равенства на u2, получим:
u2(p1(t)u1¢)¢+q1(t)u1u2=0.
Во втором
уравнении проделаем
(p2(t)u¢)¢+q2(t)u=0, u2=u
(p2(t)u2¢)¢+q2(t)u2=0.
Умножим левую часть равенства на u1, получим:
u1(p2(t)u2¢)¢+q2(t)u1u2=0.
Вычитаем из первого уравнения второе, получим:
u2(p1u1¢)¢+q1u1u2-u1(p2u2¢)¢-q
u2(pu1¢)¢+q1u1u2-u1(pu2¢)¢-q2u
(u2(pu1¢)¢-u1(pu2¢)¢)+u1u2(q1-
Упростим это уравнение,
u2(p¢u1¢+pu1¢¢)-u1(p¢u2¢+pu2¢¢
Раскроем скобки, получим:
p¢u1¢u2+ pu1¢¢u2- p¢u1u2¢-pu1u2¢¢+u1u2(q1-q2)=0.
Сравнивая с формулой (2.2), получаем:
(p(u1¢u2-u1u2¢))¢+u1u2(q1-q2)=
(p(u1¢u2-u1u2¢))¢-u1u2(q2-q1)=