Решение дифференциальных уравнений методами Эйлера и Милна

Автор работы: Пользователь скрыл имя, 28 Октября 2012 в 23:52, курсовая работа

Краткое описание

Целью данной курсовой работы является углубленное рассмотрение возможностей численного решения дифференциальных уравнений. В задачи работы входит изучение методов Эйлера и Милна и рассмотрение примеров решений данными методами обычного дифференциального уравнения первого порядка.

Содержание

Год написания 2011 г., кол-во страниц: 50 стр.
Введение
1. Задача Коши для обыкновенного дифференциального уравнения первого порядка
1.1. Постановка задачи Коши.
1.2. Разрешимость задачи Коши.
2. Классификация приближенных методов решения ОДУ с начальными условиями
3. Метод Эйлера – разные подходы к построению
3.1. Геометрический способ.
3.2. Применение формулы Тейлора.
3.3. Разностный способ.
3.4. Квадратурный способ
4. Несколько простых модификаций метода Эйлера
4.1. Неявный (обратный) метод Эйлера
4.2. Неявный метод Эйлера-Коши (метод трапеций)
4.3. Метод Эйлера-Коши (метод Хойна)
4.4. Метод Эйлера-Коши с итерационной обработкой
4.5. Уточненный метод Эйлера
Пример 1.
5. Исправленный метод Эйлера
6. Пошаговый контроль точности
Пример 2.
7. Методы прогноза и коррекции. Метод Милна
Пример 3.
8. Системы дифференциальных уравнений первого порядка Дифференциальные уравнения высших порядков
Заключение
Список используемой литературы