Применение производной

Автор работы: Пользователь скрыл имя, 31 Июля 2014 в 14:28, реферат

Краткое описание

При изучении тех или иных процессов и явлений часто возникает задача определения скорости этих процессов. Её решение приводит к понятию производной, являющемуся основным понятием дифференциального исчисления.
Метод дифференциального исчисления был создан в XVII и XVIII вв. С возникновением этого метода связаны имена двух великих математиков – И. Ньютона и Г.В. Лейбница.

Содержание

Теоретическая часть
1.1 Задачи, приводящие к понятию производной
1.2 Определение производной
1.3 Общее правило нахождения производной
1.4 Геометрический смысл производной
1.5 Механический смысл производной
1.6 Производная второго порядка и её механический смысл
1.7 Определение и геометрический смысл дифференциала
2. Исследование функций с помощью производной
Литература

Прикрепленные файлы: 1 файл

применение производной.doc

— 1.09 Мб (Скачать документ)

 

 

  1. Исследование функций с помощью производной

 

Задача №1. Объём бревна. Круглым деловым лесом называют брёвна правильной формы без дефектов древесины с относительно небольшой разницей диаметров толстого и тонкого концов. При определении объёмов круглого делового леса обычно применяют упрощённую формулу , где – длина бревна, – площадь его среднего сечения. Выясните, завершается или занижается при этом реальный объём; оцените относительную погрешность.

Решение. Форма круглого делового леса близка к усечённому конусу. Пусть – радиус большего, меньшего конца бревна. Тогда его почти точный объём (объём усеченного конуса) можно, как известно, найти по формуле . Пусть – значение объёма, вычисленное по упрощённой формуле. Тогда ;

, т.е. . Значит, упрощённая формула даёт занижение величины объёма. Положим теперь . Тогда . Отсюда видно, что относительная погрешность не зависит от длины бревна, а определяется отношением . Поскольку при возрастает на промежутке [1; 2]. Поэтому , а значит, относительная погрешность не превосходит 3,7%. В практике лесоведения такая погрешность считается вполне допустимой. С большей точностью практически невозможно измерить ни диаметры торцов (ведь они несколько отличаются от кругов), ни длину бревна, поскольку измеряют не высоту, а образующую конуса (длина бревна в десятки раз больше диаметра, и это не приводит к большим погрешностям). Таким образом, на первый взгляд неправильная, но более простая формула для объёма усечённого конуса в реальной ситуации оказывается вполне правомерной. Многократно проводившиеся с помощью специальных методов проверки показали, что при массовом учёте делового леса относительная погрешность при использовании рассматриваемой формулы не превосходит 4%.

Задача №2. При определении объёмов ям, траншей вёдер и других ёмкостей, имеющих форму усечённого конуса, в с/х практике иногда пользуются упрощённой формулой , где – высота, – площади оснований конуса. Выясните, завышается или занижается при этом реальный объём, оцените относительную погрешность при естественном для практики условии: ( – радиусы оснований, .

Решение. Обозначив через истинное значение объёма усечённого конуса, а через значение, вычисленное по упрощённой формуле, получим: , т.е. . Значит, упрощённая формула даёт завышение величины объёма. Повторив далее решение предыдущей задачи, найдём, что относительная погрешность будет не больше 6,7%. Вероятно, такая точность допустима при нормировании землеройных работ – ведь ямы не будут идеальными конусами, да и соответствующие параметры в реальных условиях замеряют весьма грубо.

Задача №3. В специальной литературе для определения угла β поворота шпинделя фрезерного станка при фрезеровании муфт с зубьями выводится формула , где . Так как эта формула сложна, то рекомендуется отбросить её знаменатель и пользоваться упрощённой формулой . При каких ( – целое число, ) можно пользоваться этой формулой, если при определении угла допускается погрешность в ?

Решение. Точную формулу после несложных тождественных преобразований можно привести к виду . Поэтому при использовании приближённой формулы допускается абсолютная погрешность , где . Исследуем функцию на отрезке [8; 50]. При этом 0,06, т.е. угол принадлежит первой четверти. Имеем: . Заметим, что на рассматриваемом промежутке, а значит, функция на этом промежутке убывает. Поскольку далее , то при всех рассматриваемых . Значит, . Так как радиан, то достаточно решить неравенство . Решая это неравенство подбором, находим, что , . В силу того, что функция убывает, следует, что .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Литература

 

  1. В.А. Петров «Математический анализ в производственных задачках»
  2. Соловейчик И.Л., Лисичкин В.Т. «Математика»

 

 

 

 


Информация о работе Применение производной