Постановка транспортной задачи

Автор работы: Пользователь скрыл имя, 03 Апреля 2013 в 12:15, реферат

Краткое описание

Транспортная задача ставится следующим образом: имеется m пунктов отправления, в которых сосредоточены запасы каких-то однородных грузов. Имеется n пунктов назначения подавшие заявки соответственно на груза. Известны стоимости р i j перевозки единицы груза от каждого пункта отправления до каждого пункта назначения. Все числа р i j, образующие прямоугольную таблицу заданы. Требуется составить такой план перевозок (откуда, куда и сколько единиц поставить), чтобы все заявки были выполнены, а общая стоимость всех перевозок была минимальна.

Содержание

1. Линейная транспортная задача - 3 стр.
2. Составление опорного плана - 6 стр.
3. Метод потенциалов - 7 стр.
3. Список использованной литературы - 15 стр.

Прикрепленные файлы: 1 файл

транспортная задача метод потенциалов.doc

— 192.00 Кб (Скачать документ)


 

 

Содержание.

 

 

1. Линейная  транспортная задача                         - 3 стр.

2. Составление  опорного плана            - 6 стр.

3. Метод потенциалов                                                 - 7 стр.

3. Список  использованной  литературы                -  15 стр.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Транспортная  задача.

 

Транспортная  задача  ставится  следующим  образом: имеется  m пунктов отправления,   в  которых  сосредоточены  запасы  каких-то  однородных  грузов. Имеется   n  пунктов назначения  подавшие  заявки  соответственно  на  груза. Известны  стоимости р i j перевозки  единицы   груза    от  каждого  пункта  отправления    до  каждого   пункта  назначения. Все  числа  р i j, образующие   прямоугольную  таблицу  заданы. Требуется  составить  такой  план  перевозок   (откуда, куда  и  сколько  единиц  поставить), чтобы  все  заявки  были  выполнены, а  общая  стоимость  всех  перевозок  была  минимальна.

Далее, предполагается, что

                                

                                 1

где bi есть количество продукции, находящееся на складе i, и aj – потребность потребителя j.

Замечание. Если  то количество продукции, равное  остается на складах. В этом случае мы введем "фиктивного" потребителя n +1  с потребностью и положим транспортные расходы pi,n+1 равными 0 для всех i.

Если  то потребность не может быть покрыта. В этом случае начальные условия должны быть изменены таким образом, чтобы потребность в продукции могла быть обеспечена.

Обозначим через xij количество продукции, поставляемое со склада i потребителю j. В предложении (1) нам нужно решить следующую задачу (математическая модель транспортной задачи):

                             

      

      2

 

                  

Транспортную задачу мы можем характеризовать транспортной таблицей и таблицей издержек:

 

а1

аn

b1

.

.

.

bm

.

         
 

.

       
   

.

     
     

.

   
       

.

 
         

.


 

p11

p1n

.

 

.

.

 

.

.

 

.

pm1

pmn


 

 

 

Допустимый план перевозок будем представлять в виде транспортной таблицы:

 

а1

аn

b

.

.

.

bm

.

 

.

.

 

.

.

 

.


 

Cумма элементов строки i должна быть равна bi, а сумма элементов столбца j должна быть равна aj, и все должны быть неотрицательными.

Пример 1.

 

 

20

5

10

10

5

15

         

15

         

20

         

 

5

6

3

5

9

6

4

7

3

5

2

5

3

1

8


 

Мы получаем следующую  задачу:

х1112131415                                                                                              =15,

                                х2122232455                                                                                   =15,    

                                                         х3132333435                 =20,

      х11                                                                        21                                                                  31                                                           =20,

      х12                                                +х22                                                                  32                                                 =5,

             х13                                                +х23                                            +х33                        =10,

           х14                                                                          24                                                               +х34                =10,                                                            

                 х15                                                 +х25                                           +х35                 =5;

 

хij 0 для i = 1,2,3; j = 1,2,3,4,5;

                   Кmin=5х11+6х12+3х13+5х14+9х15+21+4х22+7х23+3х24+5х25+2х31+32+3х3334+8х35;

 

Такие задачи целесообразно решать при помощи особого варианта симплекс-метода – так называемого метода потенциалов.

Все транспортные задачи имеют оптимальное решение. Если все значение aj и bi в условиях транспортной задачи целочисленные, то переменные xij во всех базисных решениях (а так же и в любом оптимальном базисном решении) имеют целочисленные значения.

2. Составление  опорного плана.

 

Решение  транспортной  задачи   начинается  с  нахождения  опорного  плана. Для  этого  существуют  различные  способы, рассмотрим  простейший, так  называемый  способ  северо-западного  угла. Пояснить  его проще всего будет на  конкретном  примере:

Условия  транспортной  задачи  заданы транспортной  таблицей.

       а

b

20

5

10

10

5

15

5

6

3

5

9

15

6

4

7

3

5

20

2

5

3

1

8


 

Будем  заполнять  таблицу  перевозками  постепенно  начиная  с  левой  верхней ячейки ("северо-западного угла" таблицы). Будем рассуждать  при  этом  следующим  образом. Пункт  а1   подал заявку    на  20 единиц груза. Удовлетворим эту заявку за счёт запаса 15, имеющегося  в пункте  b 1 , и запишем перевозку 15 в клетке (1,1). После этого дополним заявку за счет заявка  пункта b 2, и запишем  5 в клетке (1,2), теперь заявка удовлетворена, но  в пункте  b 2  осталось  ещё 10  единиц  груза. Удовлетворим  за  счёт  них  заявку  пунктов а2 (5 единиц клетка 2,2) и а3  (5 единиц клетка 2,3). На складе b 3 есть запас в 20 единиц, за счет его мы удовлетворим оставшиеся заявки а3 (оставшиеся 5 единиц клетка 3,3), а3 (10 единиц клетка 3,4) и а (5 единиц клетка 3,5).

5

       

6

4

7

   
   

3

1

8


 

На  этом  распределение  запасов  закончено;  каждый  пункт  назначения   получил  груз,  согласно  своей  заявки. Это выражается  в том, что сумма перевозок в каждой  строке  равна   соответствующему   запасу, а в столбце - заявке. Таким  образом, нами  сразу  же  составлен  план  перевозок,  удовлетворяющий  балансовым  условиям. Полученное  решение  является  опорным  решением  транспортной  задачи.

Составленный нами план перевозок, не является оптимальным  по  стоимости, так  как  при  его   построении  мы  совсем  не  учитывали  стоимость   перевозок  Сij .

3. Метод потенциалов.

Пусть имеется транспортная таблица, соответствующая начальному решению, хil = для базисного решения переменных, хil = 0 для свободных переменных (ячейки, соответствующие свободным переменным, остаются пустыми). Далее, нам требуется таблица расходов с заданными pij.

Отыскание симплекс множителей. Заполним таблицу расходов, оставив ячейки, соответствующие свободным переменным, пустыми. В крайний правый столбец внесем значения неизвестных u1,…,um, в нижнюю строку – значения неизвестных v1,…,vn,. Эти   m + n неизвестных для всех (i, j), соответствующих базисным переменным, должны удовлетворять линейной системе уравнений ui + vj = pij.

 

 

pll

 

plj

 

pln

ul

 

.

.

 

.

       .

 

.

.

.

pil

 

pij

 

pin

ui

 

.

       .

 

.

       .

 

.

.

.

pml

 

pmj

 

pmn

um

vl

      …

vj

      …

vn

 

 

Для всех базисных решений эта система  имеет треугольный вид, ранг её матрицы  равен  n + m – 1. Следовательно, систему всегда можно решить следующим способом.

Полагают vn = 0. Если значения k неизвестных определены, то в системе всегда имеется уравнение, одно из неизвестных в котором уже найдено, а другое ещё нет.

Переменные ui и vj симплекс - множителями. Иногда они называются также потенциалами, а этот метод решения называют методом потенциалов.

Пример 2.

5

       

u1

6

4

7

   

u2

   

3

1

8

u3

v1

v2

v3

v4

v5

 

Информация о работе Постановка транспортной задачи