Автор работы: Пользователь скрыл имя, 03 Апреля 2013 в 12:15, реферат
Транспортная задача ставится следующим образом: имеется m пунктов отправления, в которых сосредоточены запасы каких-то однородных грузов. Имеется n пунктов назначения подавшие заявки соответственно на груза. Известны стоимости р i j перевозки единицы груза от каждого пункта отправления до каждого пункта назначения. Все числа р i j, образующие прямоугольную таблицу заданы. Требуется составить такой план перевозок (откуда, куда и сколько единиц поставить), чтобы все заявки были выполнены, а общая стоимость всех перевозок была минимальна.
1. Линейная транспортная задача - 3 стр.
2. Составление опорного плана - 6 стр.
3. Метод потенциалов - 7 стр.
3. Список использованной литературы - 15 стр.
Содержание.
1. Линейная
транспортная задача
2. Составление опорного плана - 6 стр.
3. Метод потенциалов
3. Список использованной литературы - 15 стр.
1. Транспортная задача.
Транспортная задача ставится следующим образом: имеется m пунктов отправления, в которых сосредоточены запасы каких-то однородных грузов. Имеется n пунктов назначения подавшие заявки соответственно на груза. Известны стоимости р i j перевозки единицы груза от каждого пункта отправления до каждого пункта назначения. Все числа р i j, образующие прямоугольную таблицу заданы. Требуется составить такой план перевозок (откуда, куда и сколько единиц поставить), чтобы все заявки были выполнены, а общая стоимость всех перевозок была минимальна.
где bi есть количество продукции, находящееся на складе i, и aj – потребность потребителя j.
Замечание. Если то количество продукции, равное остается на складах. В этом случае мы введем "фиктивного" потребителя n +1 с потребностью и положим транспортные расходы pi,n+1 равными 0 для всех i.
Если то потребность не может быть покрыта. В этом случае начальные условия должны быть изменены таким образом, чтобы потребность в продукции могла быть обеспечена.
Обозначим через xij количество продукции, поставляемое со склада i потребителю j. В предложении (1) нам нужно решить следующую задачу (математическая модель транспортной задачи):
Транспортную задачу
мы можем характеризовать транспор
а1 |
… |
аn | ||||
b1 . . . bm |
. |
|||||
. |
||||||
. |
||||||
. |
||||||
. |
||||||
. |
p11 |
… |
p1n |
. |
. | |
. |
. | |
. |
. | |
pm1 |
… |
pmn |
Допустимый план перевозок будем представлять в виде транспортной таблицы:
а1 |
… |
аn | |
b . . . bm |
… |
||
. |
. | ||
. |
. | ||
. |
. | ||
… |
Cумма элементов строки i должна быть равна bi, а сумма элементов столбца j должна быть равна aj, и все должны быть неотрицательными.
Пример 1.
20 |
5 |
10 |
10 |
5 | |
15 |
|||||
15 |
|||||
20 |
5 |
6 |
3 |
5 |
9 |
6 |
4 |
7 |
3 |
5 |
2 |
5 |
3 |
1 |
8 |
Мы получаем следующую задачу:
х11+х12+х13+х14+х15
х21+х22+х23+х24+х55
х11
х12
+х22
х13
х14
х15
хij 0 для i = 1,2,3; j = 1,2,3,4,5;
Кmin=5х11+6х12+3х13+5х14+9х15+
Такие задачи целесообразно решать при помощи особого варианта симплекс-метода – так называемого метода потенциалов.
Все транспортные задачи имеют оптимальное решение. Если все значение aj и bi в условиях транспортной задачи целочисленные, то переменные xij во всех базисных решениях (а так же и в любом оптимальном базисном решении) имеют целочисленные значения.
2. Составление опорного плана.
Решение транспортной задачи начинается с нахождения опорного плана. Для этого существуют различные способы, рассмотрим простейший, так называемый способ северо-западного угла. Пояснить его проще всего будет на конкретном примере:
Условия транспортной задачи заданы транспортной таблицей.
а b |
20 |
5 |
10 |
10 |
5 |
15 |
5 |
6 |
3 |
5 |
9 |
15 |
6 |
4 |
7 |
3 |
5 |
20 |
2 |
5 |
3 |
1 |
8 |
Будем заполнять таблицу перевозками постепенно начиная с левой верхней ячейки ("северо-западного угла" таблицы). Будем рассуждать при этом следующим образом. Пункт а1 подал заявку на 20 единиц груза. Удовлетворим эту заявку за счёт запаса 15, имеющегося в пункте b 1 , и запишем перевозку 15 в клетке (1,1). После этого дополним заявку за счет заявка пункта b 2, и запишем 5 в клетке (1,2), теперь заявка удовлетворена, но в пункте b 2 осталось ещё 10 единиц груза. Удовлетворим за счёт них заявку пунктов а2 (5 единиц клетка 2,2) и а3 (5 единиц клетка 2,3). На складе b 3 есть запас в 20 единиц, за счет его мы удовлетворим оставшиеся заявки а3 (оставшиеся 5 единиц клетка 3,3), а3 (10 единиц клетка 3,4) и а5 (5 единиц клетка 3,5).
5 |
||||
6 |
4 |
7 |
||
3 |
1 |
8 |
На этом распределение запасов закончено; каждый пункт назначения получил груз, согласно своей заявки. Это выражается в том, что сумма перевозок в каждой строке равна соответствующему запасу, а в столбце - заявке. Таким образом, нами сразу же составлен план перевозок, удовлетворяющий балансовым условиям. Полученное решение является опорным решением транспортной задачи.
Составленный нами план перевозок, не является оптимальным по стоимости, так как при его построении мы совсем не учитывали стоимость перевозок Сij .
3. Метод потенциалов.
Пусть имеется транспортная таблица, соответствующая начальному решению, хil = для базисного решения переменных, хil = 0 для свободных переменных (ячейки, соответствующие свободным переменным, остаются пустыми). Далее, нам требуется таблица расходов с заданными pij.
Отыскание симплекс множителей. Заполним таблицу расходов, оставив ячейки, соответствующие свободным переменным, пустыми. В крайний правый столбец внесем значения неизвестных u1,…,um, в нижнюю строку – значения неизвестных v1,…,vn,. Эти m + n неизвестных для всех (i, j), соответствующих базисным переменным, должны удовлетворять линейной системе уравнений ui + vj = pij.
pll |
plj |
pln |
ul | ||
. … . |
. … . |
. . . | |||
pil |
pij |
pin |
ui | ||
. … . |
. … . |
. . . | |||
pml |
pmj |
pmn |
um | ||
vl |
… |
vj |
… |
vn |
Для всех базисных решений эта система имеет треугольный вид, ранг её матрицы равен n + m – 1. Следовательно, систему всегда можно решить следующим способом.
Полагают vn = 0. Если значения k неизвестных определены, то в системе всегда имеется уравнение, одно из неизвестных в котором уже найдено, а другое ещё нет.
Переменные ui и vj симплекс - множителями. Иногда они называются также потенциалами, а этот метод решения называют методом потенциалов.
Пример 2.
5 |
u1 | ||||
6 |
4 |
7 |
u2 | ||
3 |
1 |
8 |
u3 | ||
v1 |
v2 |
v3 |
v4 |
v5 |