Автор работы: Пользователь скрыл имя, 25 Декабря 2012 в 19:54, реферат
На самых ранних ступенях развития люди знали только натуральные числа. Но этими числами нельзя обойтись даже в самых простых случаях. Действительно, одно натуральное число невозможно в общем случае разделить на другое, если пользоваться только натуральными числами. Между тем в жизни бывает так, что надо делить, скажем, 3 на 4, 5 на 12 и т. д. Без введения дробных чисел деление натуральных чисел — невозможное действие; введение дробей делает это действие возможным.
Реферат
На тему: Положительные и отрицательные числа
Учительница: Атаева Гяндаб Рафиковна
Ученик: 6а класса Теймур Гасымов
12.12.2012
На самых ранних ступенях развития люди знали только натуральные числа. Но этими числами нельзя обойтись даже в самых простых случаях. Действительно, одно натуральное число невозможно в общем случае разделить на другое, если пользоваться только натуральными числами. Между тем в жизни бывает так, что надо делить, скажем, 3 на 4, 5 на 12 и т. д. Без введения дробных чисел деление натуральных чисел — невозможное действие; введение дробей делает это действие возможным.
Но действие вычитания и после введения дробей остается не всегда возможным: нельзя вычесть большее число из меньшего, например 5 из 3. Однако в повседневной жизни и не представляется необходимым производить подобное вычитание, и потому очень долгое время оно считалось не только невозможным, но и совершенно бессмысленным.
Развитие алгебры показало, что такое действие необходимо ввести в математику, и оно было узаконено индийскими учеными примерно в VII в., а китайскими еще раньше. Индийские ученые, стараясь найти и в жизни образцы такого вычитания, пришли к толкованию его с точки зрения торговых расчетов.
Если купец имеет 5000 р. и закупает товара на 3000 р., у него остается 5000 - 3000 = 2000, р. Если же он имеет 3000 р., а закупает на 5000 р., то он остается в долгу на 2000 р. В соответствии с этим считали, что здесь совершается вычитание 3000 - 5000, результатом же является число 2000 с точкой наверху, означающее «две тысячи долга».
Толкование это носило искусственный характер, купец никогда не находил сумму долга вычитанием 3000 - 5000, а всегда выполнял вычитание 5000 - 3000. Кроме того, на этой основе можно было с натяжкой объяснить лишь правила сложения и вычитания «чисел с точками», но никак нельзя было объяснить правила умножения или деления. Все же толкование это долго приводилось в учебниках и в некоторых книгах приводится и поныне.
«Невозможность» вычитания большего числа из меньшего обусловливается тем, что натуральный ряд чисел бесконечен только в одну сторону. Если последовательно вычитать 1, начиная, скажем, из числа 7, то мы получим числа
6, 5, 4, 3, 2, 1,
дальнейшее вычитание дает уже «отсутствие числа», а дальше уже не из чего вычитать. Если же мы хотим сделать вычитание всегда возможным, мы должны:
Так мы получаем новые числа, обозначаемые в настоящее время так:
-1, -2, -3 и т. д.
Эти числа называются целыми отрицательными числами. Стоящий впереди знак «минус» напоминает о происхождении отрицательного числа из последовательного вычитания единицы. Знак этот называется знаком количества, в отличие от знака вычитания, имеющего ту же форму; последний называется знаком действия.
Введение целых отрицательных чисел влечет за собой введение и дробных отрицательных чисел.Если мы принимаем, что 0 - 5= -5, то должны принять также, что 0 - 12/7= -12/7. Число -12/7 есть дробное отрицательное число.
В противоположность
отрицательным числам (целым и
дробным) те числа (целые и дробные),
которые рассматриваются в
Положительные и отрицательные числа (целые и дробные) вместе в школьных руководствах именуют относительными числами. В принятой научной терминологии эти числа вместе с числом нуль называют рациональными. Смысл этого названия выясняется при введении понятия иррационального числа. Подобно тому, как до введения отрицательного числа нет никаких положительных чисел, и число 3/4 есть просто дробное число, а не положительное дробное число, так и до введения иррационального числа числа +5, -5, -3/4, +3/4 и т.д. просто суть положительные и отрицательные целые и дробные числа, а не рациональные числа. Рациональные числа обозначаются большой латинской буквой R. Число 0 относится к целым рациональным числам. С натуральными и дробными положительными числами мы ознакомились ранее. Рассмотрим подробнее отрицательные числа в составе рациональных чисел.
Отрицательные целые и дробные числа записываются со знаком «минус» («-») перед числом. Численная величина отрицательного числа — это его модуль. Соответственно, модуль числа — это значение числа (и положительного, и отрицательного) со знаком плюс. Модуль числа записывается так: |2|; |-2|.
Каждому рациональному числу на числовой оси соответствует единственная точка. Рассмотрим числовую ось (рисунок внизу), обозначим на ней точку О.
Точке О поставим в соответствие число 0. Число 0 служит границей междуположительными и отрицательными числами: справа от 0 — положительные числа, величина которых изменяется от 0 до плюс бесконечности, а слева от 0 —отрицательные числа, величина которых тоже изменяется от 0 до минус бесконечности.
Правило. Всякое число, стоящее на числовой оси правее, больше числа, стоящего левее.
Исходя из этого правила, положительные числа растут слева направо, а отрицательные убывают справа налево (при этом модуль отрицательного числа увеличивается).
Определение. Числа, которые отличаются друг от друга только знаком, называются противоположными.
Например, числа 2 и -2, 6 и -6. -10 и 10. Противоположные числа расположены на числовой оси в противоположных направлениях от точки О, но на одинаковом расстоянии от нее.
Дробные числа, представляющие собой в записи обыкновенную или десятичную дробь, подчиняются тем же правилам на числовой оси, что и целые числа. Из двух дробей больше та, которая стоит на числовой оси правее; отрицательные дроби меньше положительных дробей; всякая положительная дробь больше 0; всякая отрицательная дробь меньше 0.
Например: Противоположные дроби: 0,5 и -0,5;
Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n, которое дополняет n до нуля:
Оба числа называются противоположн
При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:
.
Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.