Автор работы: Пользователь скрыл имя, 23 Февраля 2014 в 18:38, реферат
Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения
Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99[1] термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов.
Определение погрешности……………………………………………………….…………..3
Классификация и виды погрешностей…………...……………………………………….....4
Список литературы………………
Федеральное государственное
бюджетное образовательное
Высшего профессионального образования
Омский государственный техниче
Нижневартовский филиал
Кафедра электротехники
Погрешности измерений.
Доклад выполнил
Студент группы ЗЭН-311
Стрельцов Павел Александрович
Специальность: 140400.62
«Электротехнологические установки и системы
(добычи нефти и газа)»
Проверил
Абакумов А.Н.
Нижневартовск
2014
2
Содержание
Определение погрешности…………………………………………………
Классификация и виды погрешностей…………...……………………………
Список литературы……………………………………………………
3
Определение погрешности.
Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения
Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99[1] термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него[1]. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).
В 2004 году на международном уровне был принят новый документ[2], диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределённость измерений», однако ГОСТ Р 50.2.038-2004[3] допускает использовать термин погрешность для документов, использующихся в России.
В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.
4
Классификация и виды погрешностей.
По форме представления:
Абсолютная погрешность — является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины . Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
Существует несколько способов записи величины вместе с её абсолютной погрешностью:
Относительная погрешность — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99): , .
Относительная погрешность является безразмерной величиной, либо измеряется в процентах.
Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Зависит от типа шкалы измерительного прибора и определяется по его градуировке:
5
Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.
По причине возникновения:
В технике применяют приборы для измерения лишь с определённой заранее заданной точностью — основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора.
Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т. п. За нормальную температуру окружающего воздуха принимают 20 °C, за нормальное атмосферное давление 101,325 кПа.
Обобщённой
характеристикой средств
По характеру проявления:
6
возможно только на основе теории случайных процессов и математической статистики.
Математически случайную погрешность можно представить как непрерывную случайную величину симметричную относительно 0, независимо реализующуюся в каждом измерении (белый шум).
Основным свойством случайной погрешности является возможность уменьшения искажения искомой величины путем усреднения данных. Уточнение оценки искомой величины при увеличении количества измерений (повторных экспериментов) означает, что среднее случайной погрешности при увеличении объема данных стремится к 0 (закон больших чисел).
Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (ЦПТ). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.
Однако априорная убежденность в «нормальности» на основании ЦПТ не согласуется с практикой — законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.
Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).
Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок или «улучшением» эксперимента.
Надо отметить, что деление погрешностей на случайные и систематические достаточно условно. Например, ошибка округления при определенных условиях может носить характер как случайной, так и систематической ошибки.
7
По способу измерения:
Погрешность измерения и принцип неопределенности Гейзенберга.
Принцип неопределенности Гейзенберга устанавливает предел точности одновременного определения пары наблюдаемых физических величин, характеризующих квантовую систему, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Таким образом, в квантовой механике постулируется принципиальная невозможность одновременного определения с абсолютной точностью некоторых физических величин. Этот факт накладывает серьёзные ограничения на применимость понятия «истинное значение физической величины.
8
Список использованных источников и литературы.